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Abstract. Deploying safety-critical systems into constrained embedded
platforms is a challenge for developers who must arbitrate between two
conflicting objectives: software has to be safe and resources need to
be used efficiently. Mixed-criticality (MC) has been proposed to meet
a trade-off between these two aspects. Nonetheless, most task models
considered in the literature of MC scheduling, do not take into account
precedence constraints among tasks. In this paper, we propose a multi-
core scheduling approach for a model presenting MC tasks and their
dependencies as a Directed Acyclic Graph (DAG). We also introduce an
evaluation framework for this model, released as an open source software.
Evaluation of our scheduling algorithm provides evidence of the difficulty
to find correct scheduling for DAGs of MC tasks. Besides, experimenta-
tion results provided in this paper show that our scheduling algorithm
outperforms existing algorithms for scheduling DAGs of MC tasks.

Keywords: Mixed-Criticality · Directed acyclic graphs · Mode
transition · Real-time scheduling

1 Introduction

Having certified software is imperative to deploy applications in safety-critical
systems. To ensure that critical tasks always meet their timing requirements (i.e.
deadline), Certification Authorities (CA) require an overestimated Worst-Case
Execution Times (WCET).

The Mixed-Criticality (MC) model was proposed in [15] to guarantee safety
while efficiently using embedded resources. In this model, tasks with different
criticality levels share the same hardware platform. This model ensures that,
(i) high-criticality tasks of the system always perform their execution within
their deadlines and (ii) resources are efficiently used by redistributing WCET
overestimation of high-criticality tasks to low-criticality tasks.

Nonetheless, data dependencies between tasks on a MC model has seen very
few contributions [6]. Our model represents MC tasks with a Directed Acyclic
Graph (DAG), where vertices represent tasks and edges represent precedence
constraints among them. Vertices that are not related by an edge can be executed
in parallel. This is very interesting since embedded platforms use multi-core
architecture nowadays.
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In this paper, we propose a new approach based on static List Scheduling
(LS) to schedule DAGs of MC tasks for multi-core architectures. We also propose
a random generation method of MC-DAGs1, used to evaluate our scheduling
algorithm. Our evaluation shows that our scheduler has a better schedulability
rate compared to the reference algorithm of the literature [2].

The remainder of the paper is organized as follows: Sect. 2 presents the task
model used in our contribution. The main difficulties that need to be overcome
by our scheduling approach are presented in Sect. 3. In order to schedule the
MC-DAG on multi-core architectures we propose a new scheduling algorithm
in Sect. 4. The implementation of the MC-DAG test generator is described in
Sect. 5. Section 6 presents the evaluation of our algorithm on the generated MC-
DAG tests. Related works are discussed in Sect. 7 and we conclude in Sect. 8
with future research perspectives.

2 Task Model

In this section we present the task model our contribution relies on: DAGs of
MC tasks. DAGs and the synchronous model of computation are widely used
in industrial tools like SCADE from Esterel, Simulink from MathWorks among
others. Therefore, including the MC approach to this model is of great interest.

2.1 Mixed-Criticality Tasks

MC scheduling [6] has become an appealing solution to integrate various tasks
with different levels of criticality onto the same hardware platform.

MC scheduling was first presented by Vestal in [15]. Vestal’s task model
is based on the following observation: the higher the criticality level becomes,
the more overestimated the WCET is. For instance, in a low criticality level
tasks could have their WCET determined empirically (i.e. measuring execution
times over multiple executions). While on a high criticality level, code coverage
analysis and validation from a CA to determine a pessimistic WCET that cannot
be exceed at any time, is required. Therefore the low criticality levels have a
smaller WCET than high criticality levels. In order to mitigate the impact of
overestimated WCET on resource dimensioning, MC models propose to identify
operational modes, and to define different timing configurations of tasks for
each operational mode. In particular when high-criticality tasks exceed their
WCET of a low-criticality mode, the system performs a mode transition into a
high-criticality mode where low-criticality tasks are stopped (discard approach)
or have less processing power (elastic approach). However, this mode transition
needs to be safe: deadlines of high-criticality tasks must still be satisfied.

We consider MC systems with two operational modes noted HI and LO.
When the system is in LO mode (initial mode), all tasks can be executed on
the platform until their WCET in LO mode (noted Ci(LO) for a task τi). For

1 Open source: https://github.com/robertoxmed/ls mxc.

https://github.com/robertoxmed/ls_mxc
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each task τi, Ci(LO) ≤ Ci(HI) (Ci(HI) is the WCET of τi in mode HI, it
is a pessimistic WCET). If a task is able to complete its execution before its
Ci(LO), we suppose all estimated time budget is used, i.e. the processor would
be idle until the Ci(LO) is consumed. A Timing Failure Event (TFE) occurs
when a task τi runs for a longer time than its Ci(LO), and the occurrence of a
TFE triggers a mode switch from LO to HI mode. In HI mode, tasks considered
as highly critical (noted as HI tasks) are able to run until Ci(HI) while lower
criticality tasks (noted as LO tasks) are stopped: we adopt the discard approach.

2.2 DAG Mixed-Criticality Model

In addition to their criticality level, we consider tasks with precedence constraints
modeled as DAGs. This representation allows us to identify clearly which parts of
a computation can be run in parallel. Multi-core platforms are more and more
used in embedded systems, parallel computation is an important challenge to
improve resource usage. At the same time, MC studies often use independent task
sets, however real applications are most likely going to have tasks communicating
with each other. For example, Simulink and SCADE are tools that are used for
designing and implementing embedded control systems [12]. We consider real-
time systems modeled with a single-DAG, i.e. only one DAG of mixed-critical
tasks is being executed by the platform. All tasks forming the DAG are constraint
to meet a single deadline, can be preempted and can migrate from one CPU to
another.

Our model, noted MC-DAG, is composed of tasks represented by vertices
in the graph. Precedence constraints are materialized by edges. Each task τi is
characterized by a criticality level χi ∈ {LO, HI}, a WCET in LO mode Ci(LO)
and a WCET time in HI mode Ci(HI) (Ci(HI) = 0 if χi = LO). HI criticality
tasks cannot depend on the output of LO criticality tasks for safety reasons: if the
LO tasks fails to deliver its output, the HI criticality task can be compromised.
For this reason we only allow three types of communications in our model: from
HI to HI, from HI to LO and from LO to LO. Industrial standards like ARINC653
also apply this communication constraint for partitions for example.

In the remaining, we shall illustrate our contribution with the example of
the MC-DAG presented in Fig. 1. White vertices represent LO criticality tasks
and gray vertices are HI criticality tasks. Numbers on each vertex represent the
execution times of tasks. The graph on the left has WCET for tasks in LO
mode, while the right graph gives the WCET of HI tasks in HI mode. WCET
are presented in Time Units (TU).

3 Problem Statement

Scheduling MC tasks on multi-core platforms is a difficult problem, specially
due to transitions to higher criticality modes: deadlines of high-criticality tasks
must be met, even when a TFE occurs. This scheduling problem becomes even
more complex when there exist precedence constraints between tasks: if a task
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(a) DAG in LO mode (b) DAG in HI mode

Fig. 1. Mixed-Criticality DAG example.

increases its WCET due to a switch to HI mode, all its successors are delayed
in a domino effect.

In this paper, we aim at making sure a safe scheduling of a given MC-DAG
exists. A MC system is considered to be safe if (i) tasks meet their deadlines in HI
and LO modes, and (ii) the mode transition from LO to HI is safe: HI tasks meet
their deadline even when a TFE occurs: the incrementation of the WCET (from
Ci(LO) to Ci(HI)) for HI tasks cannot compromise their deadline. Allocating
MC tasks with data dependencies to a multi-core architecture is equivalent to an
optimization problem that aims at minimizing the execution time of a MC-DAG
while enforcing safe mode transitions for each possible date of a TFE. Ensuring
the safety of a LO to HI mode transition is therefore a challenging objective.

Fig. 2. Safe and unsafe mode transitions

Figure 2 provides scenarii for safe and unsafe mode transitions. The HI task
τi completes its execution. Then, both the HI task τj and the LO task τk become
ready to execute. Let us assume LO task τk starts its execution before the HI
task τj . A TFE occurs during the execution of task τj . In other words, τj executes
for a longer time than its LO WCET, Cj(LO). Thus, a mode switch occurs. τk
is stopped and τj ’s WCET is extended up to its HI WCET, Cj(HI). In these
two scenarii, the WCET Ck(LO) differs: the WCET in the second scenario is
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greater than the one in the first scenario. In the first scenario, illustrated on the
low left part of Fig. 2, the deadline of task τj is satisfied during the transition.
In the second scenario, Ck(LO) is greater and when the TFE occurs, task τj has
not enough execution time available and eventually causes a deadline miss.

In addition to this problem, another issue is to evaluate scheduling algo-
rithms for MC-DAGs in multi-core architectures. Since the MC-DAG model has
mostly seen theoretical contributions, there does not exist yet a benchmarking
framework to evaluate such DAG scheduling algorithms. Besides, benchmarking
frameworks for MC-DAG have to consider lots of parameters that influence the
degree of parallelism of tasks, the distribution of CPU utilization among tasks,
the number of cores that are assigned to the DAG, as well as the topology of
graph.

In the rest of this paper, we present the technical solutions we propose to
answer these difficult problems.

4 Multi-core Scheduling for MC-DAGs

4.1 Scheduling Algorithms for DAGs on Multi-cores

Finding an optimal scheduling of DAGs on a limited number of processors
(respecting the deadline and minimizing the scheduling time of the DAG) is
a NP-complete problem [9]. List Scheduling (LS) is a polynomial approach to
find near-optimal scheduling. It aims at producing a static scheduling for DAGs
that minimizes the completion time of the DAG, also called makespan. Several
different heuristics are based on LS and improve the resulting scheduling under
some hypothesis. As explained before, the MC-DAG model increases the com-
plexity of DAG scheduling, mainly because of the safety constraints on the LO
to HI mode transition (satisfying the deadline of HI tasks after their WCET is
incremented).

In order to reduce the complexity of this problem, we consider the following
hypotheses: the scheduler executes tasks with a time-triggered semantics, and
tasks execute exactly for their WCET: if tasks finish before their WCET, idle
time is enforced at run time. These hypotheses increase the determinism of the
schedule and reduce the number of possible scheduling scenarii, as well as the
number of instants for which TFEs may occur.

4.2 Scheduling Algorithms for MC-DAG on Multi-cores

Scheduling MC-DAGs was first proposed by Baruah for uni-core architectures
in [4]. LS was then used for scheduling this model into multi-core platforms [2].
The idea is to build two scheduling tables: one per mode. In HI mode, a static
scheduling allocates time slots to HI tasks in a table by applying LS to the DAG
in HI mode. In LO mode, another static scheduling table allocates time slots
to tasks almost the same way. However, time slots are allocated for HI tasks as
soon as they are ready. Then, time slots are allocated to LO tasks according to
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LS when they are not preempted by HI tasks. In case a TFE occurs, the system
switches to HI mode and applies the scheduling table in HI mode. Since HI tasks
are always scheduled prior to LO tasks, there is a guarantee to have a safe mode
transition.

We applied this approach to schedule MC-DAGs on uni-core architec-
tures [11]. The objective was to evaluate availability of MC-DAG systems
enriched with our recovery mechanisms to switch back to LO mode. In this
context, we realized that preempting LO tasks as soon as a HI task is ready can
produce inefficient schedules and could result in deadline misses whereas valid
schedules exist.

Figure 3 highlights the problem with this approach. Figure 3a provides the
schedule obtained with Baruah’s method on the MC-DAG we described on Fig. 1.
On this example, the deadline (180 TUs) is missed. Figure 3b illustrates the
schedule obtained with our method on the same example.

(a) Baruah’s MC DAG scheduling (b) Valid MC DAG scheduling

Fig. 3. Scheduling tables for the MC DAG

Intuitively, the main idea of our approach is to privilege HI tasks over LO
tasks, only at specific instants for which it is required to prioritize HI tasks
in order to ensure a safe mode transition. These specific instants are called
Latest Safe Activation Instant (LSAIs). The main steps of our algorithm consist
in calculating the HI scheduling table (SHI) starting from the deadline of the
graph. This way we obtain a LSAI for each HI task. The LO mode scheduling
table (SLO) is then obtained thanks to LS with preemption of HI tasks at their
LSAI. We explain this method in the remaining of this section: in Sect. 4.3, we
define a necessary condition in order to ensure mode transitions are safe. As
explained in Sect. 4.4, we use this definition to compute the LSAIs of HI tasks
in LO mode, as well as the scheduling table of HI tasks in HI mode. Finally, we
explain in Sect. 4.5 how we compute the scheduling table of tasks in LO mode.

4.3 Safe Mode Transition: Necessary Condition

We introduce in this section a necessary condition (see Eq. (1)) ensuring that a
mode transition can be performed safely. This condition is then used in Sect. 4.4
to compute (i) the LSAIs of HI tasks in LO mode, and (ii) the scheduling of HI
tasks in HI mode.

∀τi ∈ τHI ,WCRTi(LO) + Ci(HI) − Ci(LO) ≤ D. (1)
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In this equation, τHI is the set of HI tasks of the graph and D is the deadline
of the graph. WCRTi(LO) corresponds to the Worst Case Response Time, that
is the time required for task τi to finish its execution in LO mode. The intuition
behind Eq. (1) is that, for all τi ∈ τHI , τi has enough time to finish its execution
in mode HI in case a TFE occurs while executing τi in LO mode. Figure 4 gives
an illustration of Eq. (1):

– the upper part of the figure illustrates a scheduling scenario in which Eq. (1)
is not respected, leading to a deadline miss;

– the lower part of the figure illustrates a scheduling scenario in which Eq. (1)
is respected. This illustration helps to understand why, in the worst case (i.e.
the time of the TFE equals WCRTi(LO)) the deadline is still met after the
transition to HI mode.

Fig. 4. Example of unsafe mode transition

Respecting Eq. (1) forces HI tasks in LO mode to start at a time that allows
τi to switch to HI mode safely. The LSAI of τi, an exit vertex of the MC-DAG
in HI mode, is illustrated on Fig. 4. As one can see on the figure, computing the
LSAI of an exit vertex of the DAG is very easy: it is a straightforward application
of Eq. (1). In the next subsection, we explain how we compute the LSAIs of all
the HI tasks, which boils to compute the scheduling table of the MC-DAG in HI
mode.

4.4 Building the HI Mode Table

We schedule HI tasks in HI mode as late as possible in order to compute the
LSAIs of HI tasks in LO mode, leaving as much time as possible to schedule LO
tasks in LO mode. In order to do so, we first compute the LSAIs of exit vertices
as illustrated on Fig. 4. The LSAI of a task τi then becomes the virtual deadline
for the predecessors of τi and we can compute the LSAIs of these predecessors by
applying Eq. (1) with this virtual deadline. In other words, we reverse schedule
the MC-DAG in HI mode: from the deadline of the graph, backwards time 0, we
allocate time slots for HI tasks in HI mode. As a result, we obtain a scheduling
table of HI tasks in HI mode, called SHI , and the starting date of a task in this
table corresponds to its LSAI. However, in order to start HI tasks in HI mode
as late as possible we need to minimize the makespan of the reverse schedule.



224 R. Medina et al.

For this purpose, we use a LS algorithm called Highest Level First with
Estimated Time (HLFET) [1]. Indeed, HLFET is the most efficient LS algorithm
to schedule DAGs on multi-cores [9]: HLFET is less computationally expensive
than other LS algorithms (which are in general of polynomial complexity), and
provides near-optimal makespans. In HLFET, the level of a vertex is given by
the longest path from that vertex to an exit vertex, and the level of an exit
vertex is equal to its execution time. For example, applying HLFET to the graph
presented in Fig. 1b leads to the following levels for HI tasks: 〈(A, 180), (C, 140),
(D, 160), (F, 100), (G, 80), (I, 40), (J, 20)〉.

Algorithm 1. SHI computation
1: function CalcSHI
2: Calculate levels for each vertex in HI mode
3: for all HI tasks τi do
4: RET [τi] ← Ci(HI) /* Remaining execution time*/

5: t ← Deadline
6: while t > 0 do
7: for all cores c do
8: τ ← lowest level task s.t. all successors have been fully scheduled
9: SHI [t][c] ← τ

10: RET [τ ] ← RET [τ ] − 1
11: if RET [τ ] = 0 then LSAI[τ ] ← t

12: t ← t − 1
13: if

∑
RET > t ∗ NbCores then

14: return NotSchedulable
15: return SHI and LSAI

Algorithm 1 describes the algorithm we propose to compute the scheduling
table of HI tasks in HI mode, called SHI . The first step of the algorithm is
to compute the levels of tasks with HLFET (using Ci(HI) for their execution
time). We build SHI starting from the deadline and from the exit vertices of
the DAG in HI mode. For each time slot, we schedule on each core the tasks (i)
having the lowest level, and (ii) having all their successors completely scheduled.
If all the tasks are completely scheduled before time 0 is reached, the system
is schedulable in mode HI and table SHI provides its scheduling in mode HI.
Besides, the start date of τi in this table is also the LSAI of τi.

We illustrate the execution of this algorithm on the DAG provided in Fig. 1b.
We assume we have two cores to execute this DAG and its deadline is 180 TUs.
At the beginning we have two exit vertices with no successors: I and J . Tasks I
and J are selected, they have the lowest levels. Once J has been fully allocated,
at time 160 TU, the only task that can be executed is G (F has to wait until
I is completely scheduled). AT 140 TU, F is scheduled until 80 TU, activating
tasks C and D. Once D has been fully allocated, task A executes from TU 20
to 0. The final SHI table is shown in Fig. 5, and the DAG is schedulable in HI
mode. With SHI , we also obtain the LSAIs of each task, depicted with vertical
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Fig. 5. SHI table

arrows in Fig. 5: 160 for I, 140 for J , 100 for G, 80 for F , etc. As explained in
the next section, these LSAIs are then used to calculate the scheduling table of
tasks in LO mode, called SLO.

4.5 Building the LO Mode Table

Algorithm 2 describes the algorithm we propose to compute the scheduling table
of HI and LO tasks in LO mode. First, we calculate tasks levels using HLFET
(using Ci(LO) for tasks execution time). Then, we start allocating time slots to
tasks from time 0, scheduling tasks towards the deadline. We schedule tasks with
the highest level first, but we promote a HI task when its LSAI is reached. LSAI
behaves as a virtual deadline that guarantees safe mode transitions. Promoted
tasks preempt other tasks, and execute until completion. Preempted tasks can
be resumed in another processor since task migration is allowed in our model.
As explained previously, we thus guarantee that Eq. 1 is satisfied for all HI task.

Algorithm 2. SLO computation
1: function CalcSLO
2: Calculate levels for each vertex in LO mode
3: for all tasks taui do
4: RET [τi] ← Ci(LO) /* Remaining execution time */

5: t ← 1
6: for all timeslots t ≤ Deadline do
7: if t is a LSAI then promote the corresponding HI task(s)

8: for all cores c do
9: τ ← highest level task s.t. all predecessors have been fully scheduled

10: SLO[t][c] ← τ
11: RET [τ ] ← RET [τ ] − 1

12: if
∑

RET > (Deadline − t) ∗ NbCores then
13: return SchedulingException

14: return SLO

Considering the MC-DAG provided in Fig. 1a, the levels of each task are given
by: 〈(A, 120), (B, 110), (C, 90), (D, 110), (E, 40), (F, 60), (G, 40), (H, 30), (I, 30),
(J, 10), (K, 10)〉.
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Fig. 6. SLO table

Time 0 TU is a LSAI for task A so it is promoted and starts its execution. At
10 TUs, tasks B,C,D and G can run and no LSAI occurs. Thus, we select B and
D, the tasks with the highest levels. At 20 TUs, we have a LSAI for D. However,
D is already running so there is no preemption at this point. But, at 40 TUs,
it is a LSAI for C which preempts B. At 60 TUs, D has finished its execution,
B is resumed (on a different processor). Once C has finished its execution at 70
TUs, F runs until it completes at 100 TUs in parallel with B. Tasks G,E have
met their precedence constraints and it is a LSAI for G, so G and E are selected.
We continue this procedure until there are no more tasks to schedule. The final
SLO is presented in Fig. 6. Vertical arrows correspond to LSAIs of HI tasks.

In this section, we presented a scheduling approach for MC-DAGs. To eval-
uate this approach, we propose the benchmarking tool described in Sect. 5.

5 Mixed-Criticality DAG Synthesis

To evaluate our scheduling algorithm we need a benchmarking tool that auto-
matically generates a significant number of MC-DAGs. No such tool is avail-
able in the literature: contributions to this subject have only presented theo-
retical work [2] or evaluation frameworks have not been released publicly [10].
We explain the different aspects we considered for developing our benchmarking
tool.

The benchmarking tool takes into account different aspects of the various
communities that are part of our work: DAG, Real-time on multi-core architec-
tures, and MC scheduling.

– The objective of generating graphs randomly is to avoid topologies that might
influence schedulability. We developed a DAG generation tool based on the
Erdös-Rényi’s method, which has been used in several research on DAGs
scheduling for real-time systems [8,14].

– An important parameter for scheduling tasks sets on multi-core systems is the
utilization. Distribution of utilization [5] is a method widely used in the real-
time systems domain in order to benchmark scheduling algorithms. Task sets
can be generated quite efficiently with a uniform distribution of utilization
among tasks. However, these methods usually create independent tasks, i.e.
without precedence constraints among them.

– When it comes to MC in DAG generation tools, it is important to parame-
terize the utilization of HI and LO tasks, as well as utilization of HI tasks in
LO mode.
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Our generator has three main stages: (i) generation of the DAG of HI tasks,
(ii) reduction of HI tasks utilization in LO criticality mode, and (iii) completion
of the DAG with LO tasks. The following parameters are used by the tool:
e is the probability of having an edge between two vertices. p the maximum
degree of “parallelism” in the DAG, i.e. the maximum number of vertices that
are not transitively connected by an edge. CP , the critical path of the graph,
i.e. the longest path in the DAG between an entry vertex to an exit vertex.
UHI , the utilization (of HI tasks) in HI mode. UHIinLO, the utilization of HI
tasks in LO mode (UHIinLO < UHI). ULO, the utilization (of all tasks) in LO
mode.

The first step of the MC-DAG generation creates the DAG in HI mode using
a parameter UHI . This step is iterative: each iteration adds vertices until the
utilization UHI is reached. More precisely, we create in each iteration a random
number (between 1 and p) of vertices. When creating vertices, we distribute UHI

by giving each vertex a Ci(HI). An edge can be added between two vertices, with
a probability e, if (i) the vertices were created in different iterations (enforcing
the degree of paralellism p), and (ii) if adding the edge does not increase the
critical path (thus enforcing parameter CP ).

As a second step, we generate the LO part of HI tasks. Parameter UHIinLO

gives an upper bound of the utilization of HI tasks in LO mode. HI tasks’ Ci(LO)
is randomly generated between 1 and a bound starting at Ci(HI).

We iteratively try a Ci(LO) for each task and check if UHIinLO is satisfied
after the reduction. If it is not the case, a new iteration tries other values for
Ci(LO), but this time between 1 and the previous value tested. As a consequence,
values for Ci(LO) decrease until UHIinLO is satisfied. In addition, if all HI tasks
become unitary (i.e. Ci(LO) = 1) the reduction phase stops.

On the last step of the generation, LO tasks are added to the graph. We
distribute a utilization of ULO −UHIinLO to LO tasks (UHIinLO is the final real
value obtained after the reduction phase). We use a process similar to the one
used in step one in order to complement the DAG of HI tasks. However, we
prevent the process from adding edges from LO tasks to HI tasks. Finally, we
check whether the CP was reached while creating the DAG. If not, we add a
last task (either HI or LO) that completes the CP .

Our benchmarking tool is open sourced and can be found on GitHub2.
Figure 7 shows a MC-DAG that was created with our generator. HI tasks are
presented in gray and LO tasks are presented in white. Numbers represent
estimated execution times in TUs. This MC-DAG was obtained using the fol-
lowing parameters: ULO = 4; UHI = 3; UHIinLO = 1.5; p = 6; CP = 30;
e = 40%.

2 https://github.com/robertoxmed/ls mxc.

https://github.com/robertoxmed/ls_mxc
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(a) HI mode (b) LO mode

Fig. 7. Generated MC DAG

6 Evaluation of the Scheduling Algorithm

In this section we present our experimental results, and compare our approach to
Baruah’s [2] algorithm. The comparison criteria we used is the acceptance rate,
defined as follows: given a set of MC-DAGs of tasks, supposed to be schedulable
in HI and LO mode, the acceptance rate is the ratio of MC-DAGs for which a
safe schedule (i.e. also ensuring safe mode transitions) was found.

6.1 DAG Generator Parameters

In our experiments, we have considered execution platforms of 2, 4, and 8 cores.
The DAG parameters used for generation were chosen as follows: parallelism
degree p was set twice the number of cores. Here is the rationale: for p greater
than the number of cores, DAGs have mainly entry vertices. For p much smaller
than the number of cores, we consider the hardware platform is oversized. The
probability of having an edge between two vertices, e, was increased progres-
sively from 20 to 60%. Utilization in HI and LO mode ULO, UHI , was increased
progressively as well from half of the number of cores, to the number of cores
(e.g. ULO/HI varied from 4 to 8 for a hardware platform of 8 cores). Utilization
of HI tasks in LO mode UHIinLO is given by min(UHI ,ULO)

2 , that way we always
reduce HI tasks’ execution time in LO mode. The CP was fixed to 30 TUs for
all the tests, and we considered the deadline equals to CP (see definition on
Sect. 5).

6.2 Results

Obtained results, with 8 cores, are shown in Fig. 8. We do not provide results
obtained with 4 or 2 cores because they are very similar to results presented here.
Each subfigure represents results obtained with an edge probability e set to 20,
40 and 60%. Each line represents the acceptance rate for a given ULO, varying
from 4 to 8. Continuous lines correspond to results obtained with our method,
whereas dashed lines are results obtained with Baruah’s MC-DAG scheduler.
The x-axis represents the UHI , also varying from 4 to 8. Each point of the figure
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gives the acceptance rate obtained on a set of 200 DAGs for each combination
of parameters ULO; UHI ; UHIinLO; p; e; CP .

6.3 Analysis of Results

Except when ULO = 4, Baruah’s scheduler has a much lower acceptance rate
than our algorithm. This was predictable: forcing LO preemptions each time a
HI tasks can be executed is suboptimal. The difference becomes very significant
when ULO increases: on Fig. 8a, with e = 20 and ULO = 7, our method has
an acceptance rate very close to 100% whereas Baruah’s algorithm produces an
acceptance rate below 40%. Clearly, relaxing the preemption condition to only
LSAIs gives a better acceptance rate.

More generally, we can see on Fig. 8a that increasing ULO impacts signifi-
cantly the acceptance rate of a scheduling method. In practice, ULO is expected
to be high in a MC-DAG: increasing ULO may either enable the inclusion of more
functionalities, or reduce the probability of TFEs by overestimating WCET in
mode LO. Experimental results show that the acceptance rate obtained with our
method begins to decrease when ULO is above 7. For instance, on Fig. 8a, with

(a) Edge probability of 20% (b) Edge probability of 40%

(c) Edge probability of 60%

Fig. 8. Acceptance rates for different edge probabilities.
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e = 20 and ULO = 7, the acceptance rate is around 100%. With ULO = 7.5, the
acceptance rate drops to approximately 90%. It decreases progressively between
70 to 50% when ULO = 8 and UHI increases. LSAIs of HI tasks are the main rea-
son for this behavior. Each time a HI tasks preempts a LO one, the completion
time of this LO task is increased, potentially ending in a deadline miss. How-
ever, the acceptance rate provided is still very good for high levels of utilization
UHI = 8 and ULO = 7.5 on 8 cores. Therefore a vast number of LO tasks can be
included into the system and we would still be able to ensure a safe scheduling.

With higher values of e, 40 and 60%, (i.e. the DAGs have more edges) we
have similar results except that the acceptance rate for ULO above 7.5 decreases.
However, it remains above 75% in all subfigures of Fig. 8.

Our scheduling algorithm is very efficient when it comes to finding schedulers
for DAGs. At each step of the allocation phase, the scheduler tests if there are
enough slots to schedule the remaining of the DAG, which discards non-feasible
cases rapidly. On average, the scheduling phase of our experiments took 70 s for
200 DAGs that were a combination of parameters ULO;UHI ;UHIinLO; p; e;CP .
However, since the complexity of HLFET is polynomial, the running time of
our scheduling algorithm can increase significantly depending on the number of
nodes contained in the graph.

7 Related Works

In this section, we position our approach with respect to existing contributions
aiming at scheduling DAGs for Real-Time systems.

Saifullah et al. [14], adapted preemptive and non-preemptive Earliest Dead-
line First (EDF) to schedule DAGs. In this work, authors transform the DAG
of tasks into a set of independent tasks scheduled with EDF by synthesizing the
scheduling parameters of these tasks (i.e. period, deadline). However, this app-
roach requires idle time between the completion of the DAG and the deadline
in order to compute the tasks parameters, which leads to an underutilization of
the platform. DAGs in this work do not include tasks with different criticality
levels.

Scheduling tests based on Worst-Case Response Time (WCRT) for multi-
ple DAGs using DM and EDF are presented in [13]. Necessary conditions are
found for systems running multiple DAGs by finding safe upper-bounds on their
WCRT. However, these safe upper-bounds can be very pessimistic if applied to
a single DAG, which is the scope of our contribution. DAGs can be judged as
non-schedulable when in fact a valid schedule exists. In addition, each DAG has
only one criticality level in this work.

A scheduling approach for multiple DAGs with mixed-criticality levels was
presented in [10]. Authors use a federated approach to allocate cores to tasks: a
single DAG can have various exclusive cores for its execution, while less demand-
ing DAGs are scheduled in processors that are left. The task model used in this
paper differs from ours since they use DAGs to describe the internal structure of
a task: a task is modeled by jobs with precedence constraints among them. Criti-
cality levels being assigned to tasks, means that this model forbids dependencies
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among tasks of different criticality levels (even dependencies of LO tasks on HI
tasks). As opposed to our proposal, mixed-criticality tasks are independent tasks
in this model.

The federated approach was also considered on the latest work of Baruah [3]
to schedule multiple DAGs into one multi-core architecture. DAGs with a high
utilization value will have exclusive cores assigned to them and LS is applied to
find the scheduling tables for these exclusive cores. Tasks with a low utilization
are distributed to the remaining cores and are considered to be sequential, so
any real-time scheduling algorithm can be applied for them. The model differs
from the one in [10] where DAGs are assigned with a single criticality level,
while Baruah’s model allows vertices to have different criticality levels in the
same DAG. Nonetheless the approach to schedule multiple DAGs still considers
HI tasks with the highest priority over LO tasks (like in [2]), which still causes
delays on LO tasks for the scheduler in LO mode, this can be avoided with our
scheduling approach.

Existing contributions do not aim at finding a minimal execution time for
a single DAG of tasks with mixed criticality levels. As a consequence, these
contributions would perform poorly when aiming at scheduling a single-DAG
with criticality levels.

8 Conclusion

This paper presents an efficient and safe scheduling algorithm for real-time sys-
tems modelled with a DAG of MC tasks. Being based on a heuristic that mini-
mizes the completion time of the DAG, our algorithm takes advantage of multi-
core platforms to find a near optimal allocation of tasks. Evaluation results pro-
vided in the paper show the capacity of our algorithm to find feasible schedules,
even when the utilization of the multi-core platform is significant. Last but not
least, our algorithm ensures safe mode transitions: higher criticality tasks will
meet their deadline even in case timing failures occur. This paper also presents
the very first benchmarking tool that generate randomly DAGs of MC tasks.
As we believe this task model will become more and more popular in real-time
domain, this open-source tool should be of great interest for the community.

Our future works will consider multiple DAGs being executed into a single
multi-core platform with different periods and deadlines. In addition, we plan
to integrate our work in design methodologies aiming at code generation [7] and
safety analysis [11].
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