
Availability Analysis for Synchronous Data-Flow
Graphs in Mixed-Criticality Systems

Roberto Medina, Etienne Borde, Laurent Pautet
LTCI, CNRS, Telecom ParisTech, Université Paris-Saclay.

Paris, France

Email: {firstname.lastname}@telecom-paristech.fr

Abstract—The safety-critical industry is compelled to con-
tinually increase the number of functionalities in embedded
systems. These platforms tend to integrate software with various
non-functional requirements, in particular different levels of
criticality. As a consequence, Mixed-Criticality Systems emerged
in order to assure robustness, safety and predictability for these
embedded platforms. Although Mixed-Critcality Systems show
promising results, formal methods to quantify availability are still
missing for this type of systems and will most likely be required
for deployment. This paper presents a transformation process
that first produces a formal model of a Mixed-Criticality System.
From this formal model, it generates a PRISM automaton in
order to compute availability.

I. INTRODUCTION

Due to safety requirements, certification processes over-

estimate execution times of software components deployed

in safety-critical systems. Nonetheless, thanks to Mixed-

Criticality Systems (MCS), redistribution of slack time caused

by this overestimation is used to integrate more functionalities

onto the same hardware platform. However, the processes de-

ployed in these systems usually have different non-functional

constraints, hence their levels of criticality are different as well

(e.g. life-critical, mission-critical, non-critical).

The problem we tackle in this paper consists in modeling

Mixed-Criticality (MC) applications in order to evaluate avail-

ability of tasks that might be stopped by the MC scheduling

policy. To make this evaluation possible, we require these

systems to be formally represented as Synchronous Data-Flow

(SDF) graphs: taking advantage of SDF semantics, we propose

a fault model and a recovery process that are suitable to

compute functions availability.

We use the SDF model of computation in our research since

the mathematical foundation of the model allows developers to

verify execution properties (e.g. deadlock freedom, throughput,

liveness, etc). Our fault model is defined by probabilities of

timing failures that can occur during the execution of the SDF.

To overcome the complexity of availability computation, we

build a model of the MCS using the Architecture Analysis and

Design Language (AADL), gathering all the relevant informa-

tion of the system. This AADL model is then translated to

a probabilistic automaton, allowing us to compute availability

for the MCS using adapted tools.

The remainder of this paper is organized as follows.

Section II presents the preliminary notions considered in

this paper. We establish a problem statement in Section III,

demonstrating why availability for low criticality tasks is an

important matter. Section IV describes the different models

we consider to give a complete representation of a MCS. Our

solution is described in section V: we model in AADL the

MCS to produce a PRISM automaton used to verify avail-

ability properties. Our experimental results are discussed in

section VI. Related work is reviewed in section VII. The final

section concludes this paper with future research directions.

II. PRELIMINARY NOTIONS

In this section we present the different fields that are in the

scope of our paper: Mixed-Criticality, Synchronous Data-Flow

and reliability mechanisms.

A. Mixed Criticality Systems

Mixed-Criticality (MC) scheduling [2] is becoming an ap-

pealing solution to integrate various functions with different

levels of criticality onto the same hardware platform.

MC scheduling was first presented by Vestal [3]. Vestal’s

task model considers various criticality levels for the system

and is based on the fact that the higher the criticality level

becomes, the more pessimistic the WCET is estimated. Each

task belongs to a given criticality level and is coupled with

various WCET estimations: one for each level. This model

has been used across many other contributions on this topic,

including our research presented in this paper.

For the remaining of this paper, we consider a two-level

MCS: supporting HI and LO execution modes. When the

system is in LO mode (initial mode), all tasks can be executed

on the platform until their WCET in LO mode (noted Ci(LO)
for a task τi). WCET in LO mode are rather optimistic to leave

processing time to execute more functions. For each task τi,
Ci(LO) ≤ Ci(HI). A Timing Failure Event (TFE) can occur

when a task τi runs for a time greater than its Ci(LO) and

triggers a mode switch from LO to HI mode. In HI mode, only

tasks considered as HI-criticality are able to run until Ci(HI)
WCET.

B. Synchronous Data-Flow

For our study, we use the SDF model of computation to

represent the software deployed in the MCS. In fact, data-flow

graphs applications have been widely used in embedded sys-

tems due to their mathematical foundation: verify properties

like deadlock-freedom, soundness, boundedness of channels,

makes this model appealing for real-time computing.

In a SDF, tasks have to communicate with each other in

a specific order so the system can progress its execution.

However if at least one task’s inputs is not available, the task

is blocked until the required data is available. Nonetheless,

thanks to the information about the consumption and pro-

duction rates of each task, SDF are amenable to compile-

time construction of bounded and liveness guaranteeing static

schedules [4]. Realizing a system with predictable perfor-

mance properties is therefore possible.

Furthermore, recent efforts to adapt synchronous data-flows

to mixed-criticality have shown great potential for uni-core [5]

and multi-core [6], [7] architectures. We do not consider other

types of task models since extracting an analyzable model

might be too complex.

C. Reliability of Safety-Critical Systems

Another aspect to consider when it comes to safety-critical

systems are fault tolerance mechanisms. Failures in these

systems must be contained and corrected in order to have a

reliable system.

To achieve the desired reliability, system designers usually

replicate some sub-systems and use polling/voting mechanisms

to detect, repair, or mask, the occurrence of faults in these

replicas. For example, a typical architecture used in safety

critical systems is the Triple Modular Redundancy (TMR).

When the inputs of a TMR are equivalent, the system is

executing without errors. If one out of the three inputs of the

TMR is not equivalent to the others, it is safe to assume that the

component producing a different result is in an error state and

needs to be fixed or ignored. If two (or three) of the replicas

are in an erroneous state, the system is in an error state as

well. The assumption of TMR is that having two replicas in

an error state at the same time is extremely unlikely.

In the following, we base our availability analysis on

these three preliminary notions : MCS, SDF and reliability

mechanisms.

III. PROBLEM STATEMENT

For the highest level of criticality, its components must

be certified and for safety reasons WCET are overestimated.

Thanks to MC approaches, when the system executes in

normal conditions, i.e. no errors or timing failures occurred

during execution, processing time is attributed to low criticality

software components. This way the overestimation caused

by the certification process is compensated and processor

utilization is improved.

Most MC approaches do not consider a recovery mechanism

after the system makes a transition to a high criticality mode.

Once the system has switched to the high criticality mode, low

tasks are stopped and only high criticality tasks are executed

until their pessimistic WCET. The system is supposed to stop

its mission as soon as possible by staying in this survival mode.

This is not ideal since services considered with low crit-

icality may also play a major role in safety-critical system.

Fig. 1: SDF Case Study for a UAV

Shutting them down completely makes the system unusable:

we need to reestablish low criticality tasks by introducing a

recovery process for the MCS.

Availability of low-criticality services in MCS is therefore

very important. We want to know how often the system fails

and how long it takes to the system to come back to low mode.

We illustrate the different issues raised to analyze the

availability of a safety-critical system on the MCS of Figure 1.

This case study, adapted form the one from [6], represents

software components deployed in an Unmanned Aerial Vehi-

cle (UAV). Components are categorized as life-critical (grey

circles) and mission-critical (white circles). We can clearly see

that mission-critical components are essential for the quality

of service for the UAV: the Avoidance mechanism (Avoid)

makes the system safer, while the V ideo component could be

used for exploration purposes.

Computing the availability rate of an application becomes

difficult when the application is designed using both SDF,

MCS, and replication patterns such as TMR.

Replication patterns have to be introduced in the UAV in

order improve the reliability of the system. Outputs of these

functions are typically voted in a TMR before they are sent

to actuators or to other computation units of the system. In

addition, for our example, mission-critical components com-

municate with life-critical components which have a higher

criticality level: the Avoidance mechanism sends data to the

Navigation task. This communication process needs to be

reliable since higher criticality tasks can be compromised if

low tasks produce an erroneous output. Voting mechanisms are

usually used in safety-critical systems to enable this type of

communication. Nevertheless, synchronization of data sent by

replicas is very important when using voting mechanisms: if

the voter receives desynchronized data, it might consider such

a situation as the occurrence of a fault, when in fact replicas

are barely delayed.

To avoid desynchronization between voters and to assure

deterministic communications, delayed communication mech-

anisms can be deployed between tasks. We consider a lock

free implementation of M-to-N delayed communications [8] to

enable deterministic communication between mission-critical

and life-critical tasks.

To satisfy availability requirements of low criticality tasks

in MCS, we have to solve the following problems:

• Define a fault model, allowing us to represent the occur-

rence of TFEs.

• Provide the MCS with a recovery process that must be

quantified in time.

• Build a representation of the MCS, that can be auto-

matically analyzed and parametered in order to meet

availability requirements.

The main contribution of this paper consists in obtaining a

complete formal model of the MCS. By taking into account the

different components: the SDF, the fault model, the recovery

process and replication mechanisms into a single formalism.

Then, we map the formal model into a PRISM [9] automaton

used to compute an availability rate.

IV. MODELING MIXED-CRITICALITY SYNCHRONOUS

DATA-FLOWS

In this section we detail the different models that constitute

a MCS for our analysis. The first model to consider is the

SDF. This data-flow representation has to be extended, by

including different execution times and criticality levels, in

order to support task execution for different modes.

Moreover, a fault model needs to be defined for the system,

so it can characterize the probability of occurrence of a mode

switch from low criticality mode to high criticality mode.

Finally, evaluating an availability rate also requires the

definition of a recovery process for the MCS and more

precisely, it needs to be quantified in time. All these steps

are necessary to compute an availability rate for a MCS and

are finally collected in a formal model.

A. Application and task model

The SDF considered is represented as a graph (Fig. 1). HI

tasks are represented with circles having a gray background

while LO tasks are illustrated with white circles. Arcs between

tasks represent communication channels, that can be delayed

or immediate.

Names of task have been shortened (Nav stands for

Nav, Stab for Stability, Shar for Sharing, etc.). The

period given to the graph for executing one iteration in LO

or HI mode is 50ms. HI criticality tasks Nav and Stab
have the same Ci(LO) = 10ms. V otA and V otHI have

their Ci(LO) = 5ms. LO criticality tasks have the same

Ci(LO) = 5ms as well. In HI mode, HI task can execute

up to their Ci(HI) = 20ms for tasks Nav and Stab, and

Ci(HI) = 5ms for tasks V otA and V otHI (without loss of

generality, we used Ci(HI) = Ci(LO) for V otA and V otHI

to simplify the presentation). Period for the SDF in HI mode

is therefore equal to 50ms.

The first step of our transformation process to compute

availability consists in obtaining the scheduling tables for

the SDF application hosted in the MCS. Each mode has its

own scheduling table containing a task set allowed to be

executed. We compute a static scheduler for both LO and

HI mode using the algorithm presented in [5]. In this case,

the LO scheduling table, SLO, is given by the sequence:

V otA, Nav, Stab, V otHI , Avoid, V ideo, Log, Shar. For the

HI scheduling table SHI , it is also obtained using priority

based scheduling but this time, HI tasks are assumed to be

executed until their Ci(HI). Therefore, SHI is given by the

sequence: V otA, Nav, Stab, V otHI .

For readability and space reasons, we assume the SDF

is an Homogeneous SDF (HSDF): each task executes once

per iteration and consumes only one token produced by their

predecessors. Adapting the model to support multi-rate SDFs

is possible, as long as a static scheduler can be found, the

analysis of availability can be made.

B. Fault model

We characterize TFEs by determining their occurrence

probability. To do so, estimation/computation of WCET is

really important and it is not straightforward. Many methods

are discussed in the literature (e.g. execution flow analysis,

analysis of assembler instructions, experimental methods, etc.).

We base our work on a probabilistic approach in order to

specify failure probabilities for tasks.

It has been shown in [1], that probabilistic approaches can

be used to estimate WCETs. For the two levels of criticality

we consider, the more pessimistic WCET is used for high criti-

cality mode, while the more optimistic WCET is used for low

mode. A probabilistic WCET (pWCET) is categorized by a

failure probability. A failure probability for HI tasks represents

the probability of a HI task exceeding its Ci(LO). Similarly,

a failure probability for a LO task represents the probability

that data was not produced after the task was executed for its

Ci(LO). For each task τi the function f(τi) gives the failure

probability for τi with the associated optimistic Ci(LO).

C. Recovery process

The availability computation requires a recovery process for

the MCS to determine for how long the system is executing

in HI mode. Without a recovery process, the system would

remain in HI mode and availability would be unacceptable for

industrial standards.

Let us first define the condition required to get back to LO

mode. Only HI tasks are being executed by the scheduler in

HI mode. However, if HI tasks do not exceed their optimistic

WCET, Ci(LO), processing time becomes available again for

LO tasks. In addition, HI tasks are always executed at the

beginning of the iteration (thanks to the scheduler of [5]).

Doing so, we consider that the system has performed a mode

switch in LO mode as soon as every task has received all the

updated data it requires to be executed. However, updating

data for components of the SDF can take some time.

The recovery process for the UAV system (Fig. 1) is pre-

sented in Figure 2. We assume the system has been executing

in LO mode until the third iteration of the scheduler, where

task Avoid3 did not produce its output before its Ci(LO) (a

warning sign represents the failure of the task). This triggers a

Fig. 2: Recovery process example

TFE and the system switches to HI mode. HI tasks start their

execution during the next iteration: Nav4 finished before its

Ci(LO), however Stab4 exceeded its Ci(LO) causing another

TFE. The system stays in HI mode.

Iteration 5 starts by executing HI tasks, and they did not

exceed their Ci(LO) this time. LO tasks start to be executed

and no TFE occurs in this iteration either. Since task Nav has

a higher criticality level than task Avoid, a voting mechanism

is used to allow this type of communication (we recall that

task V otA implements this voting mechanism). The output

produced by task V otHI at iteration 5 is therefore considered

to happen in HI mode.

It is only at iteration 6, that the SDF has been brought

back to LO mode: data was produced by task Avoid5 for the

execution of Nav6, making the system safer. It is important

to note that task Nav5 does not use the output that was

produced by task Avoid2 since the safety-critical system might

be in very different conditions: data produced by Avoid2 is

considered to be outdated. In conclusion, the recovery process

took three iterations to come back to LO mode.

We showed the different models considered for our avail-

ability computation of the MCS: the SDF task model, our

fault model with failure probabilities and our recovery process.

All these models are gathered in a formal model of the MCS

using AADL. We then map the AADL model into a PRISM

automaton to finally obtain an availability rate for the MCS.

V. AVAILABILITY COMPUTATION

In this section we explain how we model a Mixed-Criticality

SDF (MCSDF) in AADL and how we map this model into

a PRISM automaton. AADL allows us to gather all the

information relevant to the system: the SDF representation, the

fault model and the recovery process. Mapping the obtained

model to a PRISM automaton can then be performed thanks

to this formal representation, in order to compute availability

for the system.

A. AADL modeling of a MCSDF

We describe the modeling process of the MCSDF in this

paragraph. The SDF graph is translated to a process compo-

nent. Each task τi is represented as an AADL thread. Vertexes

of the data-flow are translated to connections between threads

which can contain more than one input/output port. These

connections have a Timing AADL property: Immediate or

Delayed, representing respectively synchronous and delayed

communication in the MCSDF.

In an immediate connection, the receiver waits for the

sender to complete its execution. The scheduler must ensure

that the execution of the receiver is aligned with the comple-

tion of the sender. When connections use the delayed property,

the sender always communicates with the recipient in the next

periodic release of the recipient, i.e. after the deadline of the

sender.

As explained before the voting mechanism needs to have its

entries synchronized in order to be reliable. As a consequence,

the delayed semantic is used for connections with output ports

of Avoid and Stab that go to voting mechanisms.

AADL is capable of specifying different execution modes

for all components. Within the process, we define two AADL

execution modes: HI and LO. We specify WCET (AADL

property: compute_execution_time) for threads in each

mode, Ci(LO) and Ci(HI) for a HI task or only Ci(LO)
for a LO task. An event port, goes out from each thread and

notifies the process to perform a mode switch from LO to HI

mode when a TFE occurs. The recovery process is triggered

when the process receives a notification from the scheduler in

its event port triggerrecover, making the transition from

HI to LO mode. The Error Modeling Annex V2 [10] allows

us to describe our fault model in AADL by adding the failure

probability: f(τi) to each thread of the AADL process.

B. Mapping the AADL MCSDF model to PRISM

We then propose to transform the AADL model into a

PRISM automaton in order to quantify availability. Using

PRISM to compute availability was experimented in the space

domain [11] to quantify reliability, availability and mainte-

nance properties. To the best of our knowledge, no such study

was performed for MCS. Since the type of system we want

to analyze is quite complex, we use a model checker to ease

the computation of availability.

Our approach consists in translating the AADL model of

the MCSDF into a PRISM automaton composed by various

modules, synchronized between them thanks to transitions.

A complete overview of PRISM automaton for our AADL

MCSDF model is presented in Figure 3.

Each thread of AADL MCSDF model is mapped into one

PRISM module (Task module in Fig. 3). Each PRISM module

is an independent automaton and the parallel composition

(similar to the parallel composition of communicating sequen-

tial processes) of all this modules represent our MCSDF.

The scheduler is represented with a PRISM module as well

(Scheduler module in Fig. 3), it arbitrates task execution in

function of the system mode and the scheduling tables for the

Fig. 3: PRISM modules representing the MCSDF

LO and HI modes. The scheduler module is also responsible

for detecting timing failure events and triggering the recovery

process. We have two types of transitions in the scheduler

module:

1) The first one triggers the execution of a task and is

represented as X run (where X is the name of the

task Nav, Stab, . . .) in the Scheduler and Task module.

When the Scheduler triggers a task execution, transi-

tion X run, the task module triggers a probabilistic

transition. There is a probability f(τi) that task τi can

cause a TFE; and a probability 1 − f(τi) that the

system remains in LO mode after executing task τi.
These failure probabilities are derived from the pWCET

estimation as it was explained in Section II.

2) The second one is used to check if the task was executed

without exceeding its Ci(LO): X end lo. If a TFE

occurs, the task module triggers a transition X end hi
(overrun port of the AADL model) and the scheduler

module reaches a state where only HI tasks are executed.

These transitions are represented in our Figure 3. We

simplified X end hi transitions in the scheduler mod-

ule with a big arrow representing TFEs.

Voters V otA and V otHI have Ci(LO) = Ci(HI), no TFE

can be detected for these tasks and are simplified from the

Scheduler module. The recovery process can be seen in the

PRISM automaton (Fig. 3) as the first series of states in LO

mode. After all these states have been executed without errors,

the system goes back to the LO scheduling and remains there

until a TFE occurs.

Therefore, all the information required to compute avail-

ability for a MCSDF is obtained with our transformation

process. In the next section we explain our results to compute

availability of our MCSDF presented in Figure 1.

VI. EXPERIMENTAL SETUP

We go through our experimental setup for our case study

illustrated by Figures 1 and 3. We only analyze availability

in the case of TFE and do not consider other fault models like

hardware errors.

After obtaining the PRISM automaton thanks to the AADL

MCSDF model, we run simulations of the system for a certain

number of steps. We assume that mission-critical tasks have

a failure probability of 10−4, mission-critical tasks a failure

probability of 10−3 and non-critical tasks a failure probability

of 10−2. The PRISM automaton that was analyzed only

represents one replica of the TMR, since we are only interested

in evaluating availability in the presence of TFEs.

At each step of the simulation, the PRISM model checker

triggers a transition of the Scheduler module. However, time

spent in a given mode of the system needs to be measured. To

reach this objective we use reward functions in PRISM. Two

reward functions are used in our case study: one to keep track

of time spent in LO mode (lo iteration) and another for HI

mode (hi iteration). The counters are represented in Figure 3.

The availability formula used in PRISM to calculate avail-

ability equals the division of time the system executed in LO

mode by the overall time the system was running in HI and

LO mode. The simulation runs for a large number of iterations

until the availability value does not have meaningful changes.

Figure 4 shows the results for 500 steps of the PRISM

automaton (availability stagnates after these number of steps).

As we can see, at the beginning of the system execution, avail-

ability is very variable. Difference between time spent in LO

and HI mode is very variable. The availability rate calculated

has a value of AR = 95.79%. To obtain the overall availability

of the TMR we have to subtract the non-availability rate

occurring on two and three components at the same time:

ATMR = 1−((3×(1−AR)
2×AR)+(1−AR)

3)) = 99.483%.
This result clearly motivates that availability is better when

replicas are used.

In this section we presented our experimental setup to

compute availability for a MCSDF representing an UAV. The

PRISM model checker was in fact capable of estimating

the availability rate for the system. Our computation took

into account many aspects related to safety-critical systems:

different execution modes for a task set, a fault model, a

recovery process and reliability mechanisms.

This result shows the capability of our approach to compute

the availability of LO tasks in MCS. Having this result is of

prime importance for designers of MCS, since availability is

part of the quality attributes of such systems. The quantifica-

tion of this quality attribute will help these designers to reach

a trade-off among quality attributes of a MCS: certification

costs, timing performances, availability, hardware platform

cost, etc.

Fig. 4: Availability results for the MCSDF

VII. RELATED WORKS

As stated in Section II, our contribution uses different results

coming from various research: mixed-criticality systems, data-

flow, worst case execution time estimations and fault-tolerance

mechanisms. Including all the related work for the scope of

our paper would be too extensive, therefore we only focus on

the key contributions that are related to our study.

Related work in the area of formal analysis in order to

compute RAM properties using PRISM is presented in [11].

In this paper, authors evaluate these non-functional properties

using the PRISM model checker as well. However, their

analysis is focused on the overall platform for a satellite and

does not consider MC scheduling for the platform.

Reliability computation for MCS using data-flows is pre-

sented in [12]. The authors’ system is similar to ours: they

consider an error, system and application model in addition to

error handling mechanisms. Nonetheless their contribution is

used to find the most reliable mapping of a task set onto the

architecture and does not consider availability.

Other types of data-flow representations were extended

to support different execution modes and dynamism of the

application. For example Scenario-Aware Data-Flows [13]

have specific tasks used to set up communication rates for

the data-flow. Nevertheless, using SADF requires to explicitly

define mode transitions for each actor of the SADF which can

be tedious.

The Polychrony toolset is able to translate a sub-set of the

AADL to components of a synchronous language, in order to

schedule and verify timing properties [14]. This framework fo-

cuses on code generation and the respect of timing properties,

but does not consider MCS or RAMS properties.

VIII. CONCLUSION AND FUTURE WORK

This paper defines a transformation process that takes as

input a SDF, probabilistic WCET estimations and a recovery

process in order to compute availability of low criticality tasks

of a MCS. This analysis is important in order to achieve

the deployment of mixed-criticality based products and is

necessary to ensure acceptable levels of Quality of Service

in these systems.

Thanks to AADL we are able to overcome the complexity of

availability computation for safety-critical systems. We extend

a SDF model with a fault model and a recovery process in

order to compute availability of low criticality tasks in a MCS.

The quantification of this property helps these designers

to reach a trade-off among quality attributes of a MCS:

certification costs, timing performances, availability, hardware

platform cost, etc.

Our future works will consider availability analysis for

other types of applications, e.g. different types of data-flow

(Scenario-Aware, Affine), and other type of MC schedulers in

the context of multi-processor architectures.

ACKNOWLEDGMENT

This research work has been funded by the academic and

research chair Engineering of Complex Systems.

REFERENCES

[1] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzetti, E. Quiñones, and F. J. Cazorla,
“Measurement-based probabilistic timing analysis for multi-path pro-
grams,” Proceedings - Euromicro Conference on Real-Time Systems, pp.
91–101, 2012.

[2] A. Burns and R. Davis, “Mixed Criticality Systems - A Review,”
Department of Computer Science, University of York, Tech. Rep, 2013.

[3] S. Vestal, “Preemptive Scheduling of Multi-criticality Systems with
Varying Degrees of Execution Time Assurance,” 28th IEEE Interna-
tional Real-Time Systems Symposium (RTSS 2007), pp. 239–243, 2007.

[4] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[5] S. K. Baruah, “Semantics-preserving implementation of multirate
mixed-criticality synchronous programs,” Proceeding of the 20th
International Conference on Real-Time and Network Systems (RTNS),
pp. 11–19, 2012. [Online]. Available: papers/Baruah2012.pdf

[6] E. Yip and M. Kuo, “Relaxing the synchronous approach for mixed-
criticality systems,” Proc. of the 20th IEEE . . . , pp. 89–100, 2014.

[7] S. B. M. B. Dario Socci Peter Poplavko, “Multiprocessor Scheduling of
Precedence-constrained Mixed-Critical Jobs,” no. TR-2014-11, 2014.

[8] F. Cadoret, T. Robert, E. Borde, L. Pautet, and F. Singhoff, “De-
terministic Implementation of Periodic-Delayed Communications and
Experimentation in AADL,” Isorc, 2013.

[9] “PRISM - Probabilistic Symbolic Model Checker.”
http://www.prismmodelchecker.org/

[10] J. Delange and P. Feiler, “Architecture fault modeling with the AADL
error-model annex,” Proceedings - 40th Euromicro Conference Series
on Software Engineering and Advanced Applications, SEAA 2014, pp.
361–368, 2014.

[11] K. A. Hoque, O. A. Mohamed, C. Univeristy, and Y. Savaria, “Towards
An Accurate Reliability , Availability and Maintainability Analysis
Approach for Satellite Systems Based on Probabilistic Model Checking,”
pp. 1635–1640, 2015.

[12] P. Axer, M. Sebastian, and R. Ernst, “Reliability analysis for MPSoCs
with mixed-critical, hard real-time constraints,” 2011 Proceedings of the
Ninth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pp. 149–158, 2011.

[13] B. Theelen, M. Geilen, T. Basten, J. Voeten, S. Gheorghita, and S. Stuijk,
“A scenario-aware data flow model for combined long-run average and
worst-case performance analysis,” Fourth ACM and IEEE International
Conference on Formal Methods and Models for Co-Design, 2006.
MEMOCODE ’06. Proceedings., pp. 185–194, 2006.

[14] L. Besnard, A. Bouakaz, T. Gautier, P. Le Guernic, Y. Ma, J. P.
Talpin, and H. Yu, “Timed behavioural modelling and affine scheduling
of embedded software architectures in the AADL using Polychrony,”
Science of Computer Programming, 2014.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

