
Availability Enhancement and Analysis for
Mixed-Criticality Systems on Multi-core

Roberto Medina, Etienne Borde, Laurent Pautet
LTCI, Télécom ParisTech, Université Paris-Saclay

Paris, France

firstname.lastname@telecom-paristech.fr

Abstract—In the critical systems domain, Mixed Criticality
Systems (MCS) improve considerably the usage of computation
resources by running tasks with different levels of criticality on
multi-core processors. To ensure the safety of MCS, services pro-
vided by low criticality tasks are degraded or stopped whenever
high criticality tasks need more computation time than initially
credited. The evaluation of this degradation is hardly considered
in the literature although low criticality services are of prime
importance for the quality of service (QoS) of critical systems.

In this paper, we propose a method to evaluate the availability
of low criticality services, i.e. how often these services are
delivered in MCS. We also propose a task model that improves
this availability, demonstrated thanks to our evaluation method
on an illustrative example of MCS.

I. INTRODUCTION

Most critical systems are composed of tasks with different

levels of criticality: high criticality tasks ensure the safety of

the system, while low criticality tasks provide additional ser-

vices with low impact on safety. These systems are monitored

and controlled by real-time software applications to guarantee

that high criticality tasks meet predefined deadlines even

under pessimistic assumptions on their execution time. On the

other hand, recent works on Mixed-Criticality Systems (MCS)

advocate for resource sharing between low and high criticality

tasks to improve performance while ensuring safety [1]. This

improvement is more consequent on multi-core architectures

thanks to parallelism of tasks’ execution.

With MCS, tasks can be executed in different execution

modes: in the nominal mode, high and low criticality tasks

are both executed with an optimistic timing budget. When the

system detects a timing failure event (TFE), i.e. a task did not

complete its execution within its optimistic timing budget, the

system switches to a degraded mode. In this mode, high crit-

icality task are executed with their pessimistic timing budget,

discarding [2] low criticality tasks or degrading them [3] (i.e.
reducing their execution frequency). This difference in timing

budgets is introduced due to the multi-core processor non-

determinism: execution time of tasks greatly varies in function

of the state of the processor (i.e. caches, memory bus, etc).

Even if low criticality tasks have low or no impact on the

system’s safety, their execution is important for the system’s

usability. A satellite is an example of critical system with

different execution modes. When the satellite has a major

failure, it enters a survival mode where the solar panels are

facing the sun to save energy and its software applications

execute maintenance operations in order to restart the re-

maining services. In this degraded mode, high criticality tasks

ensure that the satellite remains in orbit and does not get lost.

However, the low critical tasks (e.g. sending communication

signals) are what is really useful and interesting in the satellite.

In this context, MCS raise an important problem: in order

to ensure the schedulability of high criticality tasks, MCS

degrade the availability of low criticality ones, where avail-

ability is defined as the ratio of completed against attempted

executions of a task. Indeed most works on MCS ignore the

resilience of the system to transient timing failures. In the

seminal work of MCS [2], when a TFE occurs in a low

criticality task, all the low criticality tasks are discarded even

if the TFE does not impact high criticality tasks. In a recent

study, authors of [4] propose a degree of allowance to mitigate

small delays on tasks’ execution. Other approaches advocate

for the degradation of low criticality tasks by increasing their

periods and/or reducing timing budgets on the high criticality

mode [3]. The evaluation of these degradations in terms of

availability of low criticality tasks is not considered by these

works. In addition, MCS also neglect the fact that real-time

systems are often composed of tasks with weakly hard real-

time constraints: a number of deadline misses is allowed for

a number of consecutive executions [5].

In this paper, we propose a Mixed-Criticality (MC) model to

improve the availability of low criticality tasks. We also pro-

pose a method and tool to evaluate availability of these tasks.

The remainder of this paper is structured as follows: our task

and fault models are presented in Section II. Enhancements

for the availability of low criticality services are described in

Section III. Section IV presents the method used to compute

the availability rates of MCS. Our contribution is evaluated

in Section V. We discuss related works on Section VI and

conclude in Section VII.

II. TASK AND FAULT MODEL

In this section, we present the task model (subsection II-A)

we rely on in order to improve and analyse the availability of

low criticality tasks of a MCS. We also present our model for

fault sources (subsection II-B).

A. Task Model

We consider MCS with two operational modes noted HI

(high criticality) and LO (low criticality). When the system

1271978-3-9819263-0-9/DATE18/ c©2018 EDAA

is in LO mode (initial mode), all HI and LO tasks can be

executed on the platform until their optimistic timing budget

in LO mode (noted Ci(LO) for a task τi). For each task τi,
Ci(LO) ≤ Ci(HI) (Ci(HI) is the timing budget of τi in HI

mode). A Timing Failure Event (TFE) occurs when a task τi
runs for its Ci(LO) but has not produced its results.

To represent parallelism and execution dependencies among

tasks, we consider applications of our MCS are modeled by

Directed Acyclic Graphs (DAG). Our model, noted MC-DAG,

is composed of tasks represented by vertices in the graph. Each

task τi is characterized by a criticality level χi ∈ LO, HI, a

timing budget in LO mode Ci(LO) and a timing budget in HI

mode Ci(HI) (Ci(HI) = 0 if χi ∈ LO). Edges in the DAG

materialize precedence constraints among tasks.

Some tasks of the DAG are identified as output tasks: they

produce the external outputs of the DAG. We consider a

service is delivered when the corresponding external output

task of the DAG has finished its execution. We note LO
outputs the outputs produced by LO tasks. Thus, computing

the availability of low criticality services (noted LO services)

boils to compute the availability of LO outputs.

B. Modeling Fault Sources

To evaluate the availability of low criticality services in

MCS, we need to quantify the occurrence of TFEs in terms of

probabilities and time. In our study, we assume that probabili-

ties of TFEs are provided: for each task τi, a TFE probability

pi is given. Measured Based Time Analysis (MBTA) can be

used to obtain a distribution of the execution time for a task,

as it is shown in [6]. This technique, among others ([7], [8])

can be used to compute the probability of a TFE. When

no fault resilience is considered for LO tasks of the MCS,

(i.e. considering MCS as defined in the seminal work on this

topic [2]) obtaining an availability rate for LO tasks could be

straightforward. Considering the TFE probabilities of tasks and

a predefined termination order of these tasks, the availability

A(τi) of a task τi is defined by the following formula, where

pred(τi) is the set of tasks terminating before τi:

A(τi) = 1 − (pτi + Στj ∈ pred(τi) pτj). (1)

This statement advocates for the use of static scheduling

tables in order to have a unique execution order of tasks.

Indeed, with a dynamic scheduling algorithm on a multi-

core architecture the number of execution orders among

tasks grows rapidly and makes the availability computation

impractical. Static scheduling also facilitates the certification

of the execution environment, e.g. the ARINC653 avionic

standard uses static scheduling tables to ease the certification

process. For these reasons, we limit the scope of our study to

static scheduling algorithms: tasks are dispatched according to

predefined scheduling tables (one for each execution mode).

Each task τi is dispatched in predefined windows with a

start date and end date. If task τi is able to complete its

execution before the end of its time window, the remaining

of the window is not re-allocated, i.e. the core executing τi
would be idle until the end of the time window. Static tables

Fig. 1: (1 − 2)-firm task representation

also justify the adoption of the discard approach for LO tasks:

varying periods and budgets for LO tasks would require to

compute a large number of scheduling tables. We assume the

static scheduling tables are also given as an input for our

method. Results presented in [9], [10] can be used to obtain

such scheduling tables.

Even under these hypotheses, computing the availability of

LO services is not trivial: the resilience of tasks to transient

timing failures has to be considered. In addition, faults prop-

agation must be controlled in order to enhance availability of

LO services. For this reason, we propose the fault propagation

model described in the next section.

III. ENHANCING AVAILABILITY ON LO TASKS

To enhance the availability of LO services we propose to

apply three improvements: 1) As long as they appear in LO

tasks, TFEs are only propagated to compromised tasks
in the MC-DAG. 2) A recovery mechanism reintroduces LO

tasks in the next iteration of the scheduling table, so the

scheduler always (re)starts in LO mode. 3) Resilience of tasks

to TFE is modeled using weakly hard real-time constraints.

A. Modeling Faults Propagation

When a TFE occurs in a HI task, the system switches to

the HI mode. LO tasks are discarded and the timing budget

of HI tasks is extended to complete their execution.

In our contribution we are interested in providing a degree

of allowance on the system and mitigate faults occurring in

LO tasks. For this reason, when a TFE occurs in a LO task,

we limit its propagation in the MCS. Instead of performing

a mode transition to the HI criticality mode, only the faulty

task is canceled and its successors in the MC-DAG are not

executed. Since the application is modeled by a DAG, we are

able to determine which LO tasks are affected by the TFE: we

know which part of the graph will not be able to execute. As

opposed to existing works on MCS, tasks that do not depend

on the failing task are allowed to complete their execution.

To enhance even further the availability of LO services, we

model the resilience of real-time systems to transient timing

failures thanks to weakly hard real-time tasks [5]. These are

often modeled with a (m − k) firm constraint: TFEs can

occur without interrupting the services as long as m out of

k consecutive executions do not miss their deadlines. Fig. 1

illustrates on a state machine the behavior of an (1 − 2) firm

task: out of two consecutive executions, at least one needs

to respect the deadline, the service can rely on produced or

existing results. On this figure, the history of two consecutive

1272 Design, Automation And Test in Europe (DATE 2018)

(a) LO Mode (b) HI Mode

Fig. 2: Architecture example

executions is represented with a binary encoding for each state.

Correct executions are marked with a 1, and deadline misses

are marked with a 0: 11 means that both the ith and (i+1)th

iterations were non-faulty while 01 means that the ith iteration

was faulty while the (i + 1)th iteration was non-faulty. The

status of task executions is represented by transitions among

states. In the remainder of this paper, LO tasks enhanced with

(m− k) firm constraints are referred as LO* tasks.

If the system switched to HI mode, the recovery of LO

tasks is performed: once the system has finished executing

the scheduling table in HI mode, at the next execution of the

scheduling table, the system goes back to LO mode. Safe mode

transitions from the LO to the HI mode are ensured using

scheduling methods of [9], [10], i.e. the system is capable

of switching to the HI mode if a TFE occurs and HI tasks

do not miss their deadlines during the transition. Therefore,

reallocating LO tasks on the next execution of the MC-DAG

is possible and does not compromise the execution of HI tasks.

B. Illustrative Example

An example of a MC-DAG is illustrated in Fig. 2. The

system represents an Unmanned Air Vehicle (UAV). HI tasks

are illustrated by gray vertices while LO tasks are the white

vertices. Each node is annotated with its timing budget for

the LO and HI modes. In Fig. 2a the system in LO mode is

represented. For example task GPS has a Ci(LO) = 20 TU
with a TFE probability of 10−3. Some of these tasks can also

be (m−k) firm: task Log in the example is an (1−2) firm as

identified by its label. The HI mode is illustrated by Fig. 2b.

The navigation system of the UAV is composed of tasks

Avoid (Avoidance), Nav (Navigation) and Stab (Stability)

which are HI tasks. These ensure that the UAV will not crash.

Nonetheless, if the UAV is used on an exploration mission,

what is interesting for the end users is the record Rec of the

GPS coordinates and the V ideo transmissions: it would be

interesting to deliver them whenever it is possible.

The following scenarii show how the MCS reacts to TFE

that occur on different tasks of the MCS in Fig. 2. For space

limitation we assume there is only one DAG in the MCS

(a) Nominal scheduling in LO mode

(b) Discard MC.

(c) Improved MCS: fault propagation only.

(d) (1−2) firm: mode transition in the second execution.

Fig. 3: Examples of TFE on different tasks.

with a single period/deadline. As long as scheduling tables

are provided, the analysis remains the same even with various

DAGs and different periods/deadlines, since we consider the

hyper-period for the analysis. Fig. 3a shows the nominal

scheduling tables of the MC-DAG in LO mode. When a TFE

occurs on task GPS in a discard MC model, a mode transition

occurs, as shown in Fig. 3b. A TFE in the GPS task provokes

a mode switch and discards the execution of the Log and Com
tasks. However, there is no dependency between the GPS task

on the one hand, and the Log or Com task on the other hand.

With our fault propagation model (Fig. 3c) this is no longer the

case, and tasks Log and Com can complete their execution.

Finally, Fig. 3d shows how the system is able to tolerate a

TFE on the Log task if it is (1 − 2) firm: two consecutive

faults on the task need to take place to discard its successors.

As shown on these scenarii, we expect our fault propagation

model to enhance the availability of LO services in MCS. To

determine if these enhancements are significant in terms of

availability, we propose a method to compute availability in

the next section.

IV. COMPUTING AVAILABILITY RATES

We consider that services of the MC-DAG are delivered

when output tasks are executed. We thus focus on the avail-

ability of LO outputs of the MC-DAG. To compute this

availability, when LO* tasks are deployed in the MCS, Eq. 1

does not hold: the availability analysis is too complex due

Design, Automation And Test in Europe (DATE 2018) 1273

to the behavior of LO* tasks. By using Eq. 2, the availability

value can be obtained: counting the number of times an output

was produced, divided by the total executions of the graphs

in LO mode (LOexec) and HI mode (HIexec).

A(outi) = Num prodi/(LOexec +HIexec). (2)

We propose a method to compute the availability of LO

outputs by translating the MC-DAG and scheduling tables into

probabilistic automata and evaluation formulas used by the

PRISM simulator [11].

A. Probabilistic Automata (PA) in PRISM

PRISM is a probabilistic model checker capable of ana-

lyzing systems that exhibit complex probabilistic behaviors,

e.g. security and embedded systems. Our fault model with

TFEs being probabilistic justifies the utilization of this tool to

perform our availability analysis. A PRISM model is made

of a set of PA, and each automaton is characterized by:

states to represent tasks’ execution, local variables for our

fault propagation model, probabilistic transitions to represent

TFEs, rewards to count output productions and deterministic
transitions to incorporate our recovery mechanism.

B. Probabilistic Automaton for Scheduling Tables

The idea behind the translation of scheduling tables to

a PA is to represent the state of the processor, i.e. which

task is running and in which mode. However, having parallel

automata in PRISM increases significantly the simulation time

due to the large number of possible states. Since all tasks need

to be checked, doing it in a sequential manner does not change

the final result but significantly reduces the simulation time.

To check completion of tasks, we sort the tasks of the MC-

DAG by their end of time window in the LO scheduling table,

and create an ordered list of tasks in LO mode. For each

task τi in this list (where i is the index of this task in the

list) we create a state Li and a boolean variable bi. Due to

parallelism obtainable thanks to multi-core processors, tasks

can have the same end of time window. This has to be taken

into consideration for the availability computation since mode

transitions can be triggered by HI tasks but LO outputs can

be available at the same time slot. Ties in the list need to

be broken with the following rules: 1) LO tasks that are exit

nodes of the graph go first: we need to know if their output is

available. 2) HI tasks go afterwards, a mode transition occurs

when they have a TFE. 3) Other LO tasks are checked at the

end, no mode transition occurs even if they fail.

After generating the states representing the execution of

tasks in LO mode, we connect them with the following rules:

1) From a state Li: if it represents a LO task, we add to next

state Li+1. One representing the occurrence of a TFE (with a

probability pi) and updates bi to false, whereas the other (with

a probability 1 − pi) updates bi to true.

2) If Li is a LO* task, we add an intermediary state L∗
i

and a set of k variables to represent the execution history of k
executions of τi. We connect L∗

i to Li with two probabilistic

transitions. In each transition, the execution history is updated

to account for a new correct or incorrect execution of τi. L
∗
i is

then connected to Li+1 thanks to two deterministic transitions.

The guard of the first transition checks if at least m out of k
executions of the LO* task were correct. If that is the case

boolean, bi is set to true. The second transition represents a

failure of the LO* task (i.e. less than m out of k executions

were correct), and boolean bi is set to false.

3) If Li is a LO output task, we also need an intermediary

state, noted Lout
i , to check if all the predecessors of Li

executed normally. We also add a reward outi to count for

the number of cycles where the output is produced (used for

Eq. 2). Then, Li is connected to Lout
i with two probabilistic

transitions. One with a probability pi updates bi to false, the

other with a probability 1 − pi updates bi to true. Lout
i is

then linked to Li+1 with two deterministic transitions. The

first one represents the production of the output (i.e. service

delivery) and is guarded by a boolean conjunction of the

boolean variables representing the execution of τi and all its

predecessors in the MC-DAG. When firing this transition, the

reward outi is incremented. For the output Rec, this transition

is guarded by bGPS ∧ bRec and reward outRec is incremented.

The second transition represents the non production of the

output (i.e. the conjunction is false).

4) If Li is a HI task, we add a probabilistic transition from

Li to Li+1 with probability 1−pi. This represents τi executing

within its timing budget. Since Li is a HI task, the system

switches to HI mode in case of TFEs. We explain how the

execution in HI mode is represented in the generated PA in

the remainder of this subsection.

Note that if Li is a HI task and an output task, a combination

of rules 1 and 3 is applied. This is not detailed for space

limitation reasons. Besides, when Li is the last state of the list,

Li+1 becomes L0: the execution of the MC-DAG is cyclic.

To translate the scheduling table in HI mode, we also sort

the nodes of the MC-DAG by their end of time window in

the HI scheduling table. For each task τi in the ordered list

we create a state Hi in the PA we generate. Hi represents the

execution of τi in HI mode. To represent a mode switch in case

of TFEs in a HI task τi, we add a probabilistic transition from

Li to Hi with a probability of pi (probability of TFE in τi). We

then connect each state Hi with its successor in the list using

deterministic transitions. Note here that if Hi is the last state

of the list, it is actually connected to L0 with a deterministic

transition: this represents the recovery mechanism.

Fig. 4 illustrates the PA obtained by our translation algo-

rithm with the MC-DAG of Fig. 2. Dotted lines represent

probabilistic transitions. As we can see they are annotated

with TFE probabilities: pτi . Intermediary states to account for

the production of LO outputs are Lout
V ideo, L

out
Rec and Lout

Com for

tasks V ideo,Rec and Com. Deterministic transitions come

from these states (full lines in the figure) and are guarded by

the boolean conjunctions of the output’s predecessors. L∗
Log is

the intermediary state introduced in order to test the (m− k)
firm behavior of task Log.

Once the PA is generated, we use a reward operator (noted

R in PRISM) to compute the cumulative value, for a number

1274 Design, Automation And Test in Europe (DATE 2018)

Fig. 4: Translation of the UAV system

of simulation steps (each step triggers one transition for the

automaton), of rewards associated to outputs of the MC-

DAG. A similar mechanism is used to compute the number

of executions of the scheduling tables in LO and HI mode.

This is finally translated in a formula to compute availability

of outputs as expressed in Eq. 2.

We proceed to test our translation algorithm in the next

section where we consider different architectures to compute

their availability rate.

V. EXPERIMENTAL RESULTS AND DISCUSSION

An implementation of our translation of MC-DAG to

PRISM automata is available as an open source project1. We

present in this section the results we obtained when using this

tool to analyse the availability of low criticality services of the

UAV system illustrated on Fig. 2. We also present the threats

to validity of these results.

A. Experimental Setup and Results

We perform the availability analysis under three different

execution models : (i) the discard MC one (a TFE triggers a

mode transition), (ii) our enhanced MC model and (iii) our

enhancement enriched with LO* tasks.

We compute the availability rates for services V ideo, Rec
and Com thanks to our tool. We set the maximum number

of steps simulated in PRISM: each step triggers one transition

of the automaton. We simulated the execution of our system

for 5 × 106 steps to obtain a stable value of availability

with a precision of 10−7. Such precision is typically required

when a system is supposed to be used for years: in this

case, a difference of availability at scale 10−7 can make a

difference. For instance, an avionics function at level B of

criticality (second most critical) must have a probability of

failure of 10−7 per hour of flight (and 10−5 for level C). In

our experiments, the number of steps we used to reach this

precision was set experimentally, observing the stabilization

of the availability value during the simulation of the model.

Table I provides the results obtained when computing

availability rates of the UAV example. The availability values

of outputs Rec and Com are improved when we consider

allowance on the MCS. The first improvement can be seen

when our enhanced mode transition condition is used: Rec
and Com are more available than in the discard MC model.

The fact that mode switches are not triggered at every TFE

and that faults in LO tasks are only propagated to dependent

1https://github.com/robertoxmed/ls mxc

TABLE I: Experimental results

Availability Rate
Outputs Discard MC Enhanced MC Enhanced MC w/ WHRT
V ideo 98.90099% 98.90099% 98.90099%
Rec 97.80331% 97.90121% 97.90121%
Com 95.85703% 97.01922% 97.98941%

tasks has a positive impact on availability. This is improved

even further for the Com output when the Log task is a LO*

task with an (1 − 2) firm behavior: the task is capable of

mitigating some TFEs that can occur. We observe a significant

gain of availability for the Com service: more than 2% when

considering Log as an (1 − 2) firm task, and more than 1%

otherwise. This is a very significant difference for a critical

system, specially when a precision of 10−7 is required.

These experimental results show the efficiency of our

method, as well as the effectiveness of the fault propagation

model we propose: it significantly improves the availability of

low criticality services in critical systems.

B. Threats to Validity

The threats to validity of our experimental results are for-

mulated as follows: does the method scale for more complex

systems? Is the availability improvement measured on the

example repeatable?

In terms of complexity, we expect the scalability of our

method to be influenced by the complexity of the input model

(i.e. number of tasks, number of LO* tasks, number of outputs,

etc.) and the required precision of the availability: the number

of simulation steps increases when high precision is required,

but also when tasks have a high probability of failure. In order

to evaluate the scalability of our approach with regards to the

complexity of the input model, we measure the time required

to obtain the availability of low criticality services in more

and more complex examples.

For the UAV example of Fig. 2, computing the availability

rate for each LO output after 5 × 106 steps took 10-20

seconds with an Intel R©CoreTM i7-5600U CPU @ 2.60GHz.

We produced more complex examples by replicating the UAV

of Fig. 2 up to 5 times in a single MC-DAG. The computation

of our availability rate grows rapidly: when 3 replicas of the

DAG are considered the computation of an availability rate

takes up to 4 hours. For 5 replicas the computation of the

availability takes up to 26 hours. This model is made up of 40

tasks (20 LO tasks, 5 LO* tasks, 15 HI tasks) and 20 outputs (5

HI, 15 LO), and failure probabilities vary from 10−5 to 10−2

(see Fig 2). We obtained an availability value with a precision

of 10−5, which is quite high for low criticality services.

Design, Automation And Test in Europe (DATE 2018) 1275

We believe that this example is representative of a complex

system with pessimistic hypothesis for our method (high pre-

cision required with high probabilities of TFEs: 10−2 to 10−3

for most tasks). In this context, 26 hours is still acceptable

for an early validation of the QoS of a complex and critical

system. If quicker results must be obtained, for instance to

compare architectures at early stages of the development pro-

cess, the precision can be set to smaller values. For example,

with 4 replicas of the UAV MC-DAG, TFE probabilities of

10−4 for every task, and a precision of 10−5, we could obtain

availability of outputs in 1 hour of simulation (2×10−5 steps).

In terms of repeatability, the threat to validity concerns the

gain of availability measured in our experiments. We have a

significant gain of availability for the Com service on the UAV

example. On the one hand, we expect this gain to be smaller

with more realistic probabilities of TFEs. On the other hand,

we expect this gain to grow if more LO tasks are added to

the MC-DAG: if a discard MC model is adopted additional

TFE points are introduced to the scheduler. To evaluate these

statements, we performed new experiments and measured the

improvement of availability for the Com service when using

our approach versus discard MC model. First, using the UAV

example with TFE probabilities to 10−4 for all tasks, the gain

was of 0.04% when considering Log as an (1− 2) firm task,

and 0.03% otherwise. Second, we increase the number of LO

tasks by considering 4 replicas of the UAV, the gain was of

0.2% when considering Log as an (1 − 2) firm task, and

0.16% otherwise. Again, all these gains are very significant

when a precision of 10−5 or 10−7 is required for a low

criticality service, confirming our expectations and showing

the repeatability of our results.

VI. RELATED WORKS

Taking into account QoS for LO tasks has recently been

tackled in the MC domain. The scheduling approach presented

in [3] proposes to change periods of LO criticality tasks in

order to have a minimum service of LO tasks: the period is

incremented to have less activations of LO tasks but they are

still executed in the HI mode. Adaptations to the discard MC

model have also been proposed [12], where LO tasks also have

a Ci(HI) smaller than their Ci(LO). A scheduling algorithm

is proposed in this contribution and proved to be dominant over

other studies considering the same task model. Nonetheless

these works consider independent task sets and mono-core

architectures. Improving the QoS for LO tasks thanks to fault-

tolerance for MCS has been studied in [13]. Authors consider

a degraded LO mode when overruns and transient faults occur

the system, allowing the execution of LO tasks even after

failures. However, none of these works propose a method to

measure the improvements on the QoS in terms of availability

of low criticality services.

A method to compute an availability of LO tasks in MCS

was proposed in [14]. To our knowledge this is the only

existing contribution considering an availability analysis for

MCS with task precedence constraints. Nonetheless, no en-

hancement of the discard MC model is proposed in this work.

VII. CONCLUSION

This paper presents two contributions: a method to compute

the availability of low criticality services in Mixed-Criticality

Systems, and a model to improve this availability. Exper-

imental results show the usability of our method, as well

as the enhancement of this availability with the model we

proposed. Last but not least, an open-source implementation

of the proposed approach is available.

In the future, we plan to extend this work to support N
levels of criticality. We also plan to extend our code generation

framework to automate the generation of software applications

with both immediate (i.e. modeled as MC-DAGs) and delayed

deterministic communications [15].

ACKNOWLEDGMENT

This research work has been funded by the academic and

research chair Engineering of Complex Systems and the Smart,

Safe and Secure Platform (S3P) project.

REFERENCES

[1] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department
of Computer Science, University of York, Tech. Rep, 2013.

[2] S. Vestal, “Preemptive Scheduling of Multi-criticality Systems with
Varying Degrees of Execution Time Assurance,” 28th IEEE Interna-
tional Real-Time Systems Symposium (RTSS 2007), 2007.

[3] H. Su and D. Zhu, “An elastic mixed-criticality task model and its
scheduling algorithm,” in Design, Automation & Test in Europe (DATE),
2013.

[4] F. Santy, L. George, P. Thierry, and J. Goossens, “Relaxing mixed-
criticality scheduling strictness for task sets scheduled with fp,” in 24th
Euromicro Conference on Real-Time Systems (ECRTS), 2012.

[5] G. Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time systems,”
IEEE transactions on Computers, vol. 50, no. 4, 2001.

[6] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem; overview of methods and survey of tools,” ACM
Trans. Embed. Comput. Syst., vol. 7, no. 3, May 2008.

[7] G. Bernat, A. Colin, and S. M. Petters, “Wcet analysis of probabilistic
hard real-time systems,” in IEEE Real-Time Systems Symposium, 2002.

[8] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzetti, E. Quinones, and F. J. Cazorla,
“Measurement-based probabilistic timing analysis for multi-path pro-
grams,” in Euromicro Conference on Real-Time Systems (ECRTS), 2012.

[9] S. Baruah, “The federated scheduling of systems of mixed-criticality
sporadic dag tasks,” in IEEE Real-Time Systems Symposium (RTSS)
2016. IEEE.

[10] R. Medina, E. Borde, and L. Pautet, “Directed Acyclic Graph Schedul-
ing for Mixed-Criticality Systems,” 22nd International Conference on
Reliable Software Technologies - Ada-Europe, 2017.

[11] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in International Conference on
Computer Aided Verification (CAV), 2011.

[12] S. Baruah, A. Burns, and Z. Guo, “Scheduling mixed-criticality systems
to guarantee some service under all non-erroneous behaviors,” in 28th
Euromicro Conference on Real-Time Systems (ECRTS), 2016.

[13] Z. Al-bayati, J. Caplan, B. H. Meyer, and H. Zeng, “A four-mode
model for efficient fault-tolerant mixed-criticality systems,” in Design,
Automation & Test in Europe (DATE), 2016.

[14] R. Medina, E. Borde, and L. Pautet, “Availability analysis for syn-
chronous data-flow graphs in mixed-criticality systems,” 11th IEEE
International Symposium on Industrial Embedded Systems, SIES 2016.

[15] F. Cadoret, T. Robert, E. Borde, L. Pautet, and F. Singhoff, “De-
terministic implementation of periodic-delayed communications and
experimentation in aadl,” in Object/Component/Service-Oriented Real-
Time Distributed Computing (ISORC), 2013 IEEE 16th International
Symposium on.

1276 Design, Automation And Test in Europe (DATE 2018)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

