
Work-in-Progress: System-wide DVFS for real-time
systems with probabilistic parameters

Roberto Medina, Liliana Cucu-Grosjean
Inria, Paris, France

{roberto.medina-bonilla, liliana.cucu}@inria.fr

Abstract—Power consumption and the ever-increasing service
demand are key issues that real-time embedded systems are
facing nowadays. Approaches based on Dynamic Voltage and
Frequency Scaling (DVFS) are capable of reducing the energy
consumed by processors while still guaranteeing real-time con-
straints. In this paper we present short-comes on the state-of-
the-art techniques that need to be leveraged in order to be more
effective when reducing energy consumption: our experimental
results clearly show that tasks’ execution time is not proportional
to processor speed, and that DVFS techniques could also be
applied on other components like bus and memory without
compromising time constraints. We also discuss the applicability
of real-time probabilistic systems and DVFS, and argue that
by adopting a frequency-aware model, we can (i) capture more
detailed behaviors of tasks w.r.t. processor speeds and (ii) apply
DVFS techniques to gain in energy consumption.

I. INTRODUCTION

During the past few years, embedded real-time systems
have been confronted to increased processing capabilities (by
incorporating more functionalities) and, at the same time,
reduce their energy consumption. In fact since many of these
systems are battery powered and recharging or changing a
battery is not always practical or feasible, energy management
has become a prime design objective for the conception of
embedded real-time systems.

A common effective technique for reducing energy
consumption is Dynamic Voltage and Frequency Scaling
(DVFS) [1]. The majority of modern processors offer the
possibility to switch frequencies in order to reduce input
voltage given to the unit in only a few microseconds. By
doing so, tasks’ execution time tends to increase, while energy
consumption decreases. The main goal of DVFS techniques
is to derive proper frequency values capable of guaranteeing
timing constraints while minimizing energy consumption. A
common assumption made by many DVFS real-time schedul-
ing policies is the scalability of tasks’ Worst Case Execution
Time (WCET). It is often assumed that WCET is fully scalable
w.r.t. processor speed, meaning that the faster the processor
goes, the faster tasks will complete their execution. As a matter
of fact, actual scheduling algorithms on real-time operating
systems adopt this hypothesis in their implementations [2].
Nevertheless, we will show through experimental results that
this is not always the case, and that other components like the
bus and memory play major roles on tasks’ execution time.

At the same time, while DVFS techniques have mostly
been applied to processors on real-time systems, in reality,

energy consumed by the processor only represents a fragment
of the energy consumed by the whole system. For example,
when we look into modern computer architectures, energy
consumed by the memory can take up to 25% of the total
energy consumed [3] and it has been demonstrated that DVFS
techniques can also be applied to other components like
memory and buses in the context of real-time systems [4].

Finally, to cope with the ever-increasing demand in terms
of functionalities and services for modern embedded systems,
we are interested in probabilistic real-time systems where
the WCET is defined thanks to a probabilistic distribution.
A probabilistic real-time systems can guarantee a minimum
degree of schedulability while other scheduling policies would
deem the system as non-schedulable [5], [6]. Nevertheless,
DVFS techniques have never been used on these types of
systems. Therefore, in this paper, our main objective is to
propose an appropriate model for WCET distributions when
frequencies change on various components of the system.
Finally, we will show how existing DVFS techniques can
be applied to this type of probabilistic real-time systems and
discuss future research directions.

II. BACKGROUND: TASK MODEL AND DVFS TECHNIQUES

In this section, we introduce notions and results about
DVFS on non-probabilistic real-time systems. To define an
appropriate probabilistic model with DVFS, we look into
existing works. A typical real-time systems is implemented
as a set of concurrent tasks being executed by the operating
system. A task τi is defined as a tuple τi = (Ci, Di, Ti),
where Ci is its WCET, Di its deadline and Ti its period
(for periodic systems) or its minimal inter-arrival time (for
sporadic systems).

A. Scalable WCET

A common hypothesis taken by many DVFS techniques is
the scalability of the WCET w.r.t. the processor speed [1].
The WCET could therefore be defined thanks to the following
function: Ci(s) = Ci/s, where s is the speed of the processor.

Some well known scheduling algorithms include Dynamic
Reclaiming Algorithm (DRA), Agressive Speed Reduction
(AGR) [7] and Greedy Reclaim of Unused Bandwidth (GRUB)
with its power-aware extension (GRUB-PA) [8]. The above-
mentioned algorithms rely on the following principle: because
WCET is difficult to estimate and safe upper-bounds are often
used, tasks tend to complete their execution earlier than their



WCET. This unused processing time can be then reclaimed in
order to reduce the processor speed and still meet deadlines.
The transition from one frequency to another is performed
during the context switch.

B. Partially scalable WCET

Nevertheless, it is unrealistic to think that during tasks
execution no memory access takes place. Therefore, the hy-
pothesis of a fully scalable WCET can be too optimistic
for certain systems. In [9] authors propose a static analysis
framework used to obtain Worst Case Execution Cycles and
demonstrate that, in the presence of a memory hierarchy,
the number of cycles does change when the processor speed
changes. For instance, when the processor goes faster than
memory and tasks perform many memory requests, more
cycles will be spent waiting for the memory. In their analysis,
authors consider a fixed number of cycles for memory re-
quests, defining the following function: Ci(s) = Ci/s+Cfix.
By doing so, they are capable of estimating tighter WCET
bounds. Another advantage of this framework is that it can
be used “on top” of any existing DVFS scheduling algorithm,
improving energy savings on existing algorithms.

C. Extending DVFS to other components

It is clear that DVFS techniques are capable of limiting the
energy consumption of the processor and many scheduling
algorithms have been developed to take advantage of this
feature [1]. As a matter of fact, frequency scaling has also been
considered on other components of hardware architectures
like the bus and memory. These components also require a
large portion of energy in order to operate [3]. For instance,
scheduling algorithms have been proposed for architectures
capable of supporting DVFS at the processor and memory
level [3], [4]. The WCET will be decomposed into two (or
more) scalable portions that vary in function of the hardware
setup. For instance, one could define the WCET by the
following formula (CPU and memory are DVFS capable):
Ci(scpu, smem) = Ccpu

i /scpu + Cmem
i /smem + Cfix.

Considering a mixture of scalable and non-scalable parts
on tasks’ WCET seems to be an appropriate approach when
defining a task model for DVFS algorithms since it captures
the behavior of all physical components of the architecure.
However, existing approaches have gone at the instruction
level to determine which part of the program does not scale
and in reality COTS are equipped with hardware features
like caches limiting the impact of memory hierarchy. These
enhancements push towards the scalability of the WCET w.r.t.
the processor speed.

III. FREQUENCY SCALING PROFILING

To evaluate how close the fully scalable model is to reality
on modern COTS, we have performed experimental evalu-
ations of the TACLe benchmark [10]. Our first goal is to
observe the scalability of execution time w.r.t. processor speed.
The second goal of these experiments consists in observing
the impact of memory speed on some of these programs, if

2.2 2.25 2.3

adpcm dec
adpcm enc

ammunition
cjpeg transupp

cjpeg wrbmp
dijkstra

epic
fmref

gsm dec
gsm enc

h264 dec
huff enc

mpeg2
ndes

petrinet
rijndael dec
rijndael enc

statemate
susan

Fig. 1: Ratio of execution time between min. and max. speed
for TACLeBench programs

the impact is small then considering DVFS techniques at a
memory level would be beneficial for the overall system.

A. Experimental setup

Our experiments are conducted on a Raspberry Pi 3B+.
This board contains an ARM Cortex A53 processor with
speeds varying from 600 MHz to 1400 MHz. Cores access
the memory (default 500 MHz) through a bus (default 400
MHz). We set the Raspberry Pi to use the Linux kernel 4.14
with the PREEMPT_RT patch.

In our experiments we isolate the programs we consider for
measurements, therefore some setup at the operating system
level is performed:
• TACLeBench programs are executed in a single core

isolated at a kernel level by setting the isolcpus option
at boot. • Each program has its affinity and priority changed
to be executed on the isolated core at the maximum priority. •
Real-time throttling is turned off. • CPU frequencies are setup
thanks to the userspace governor. Chosen frequencies are
600 and 1400 MHz. • Memory frequencies can be changed
thanks to the Raspberry Pi firmware at boot. Chosen frequen-
cies are 250 MHz, 375 MHz and 500 MHz. • Execution time,
CPU cycles and instructions are measured thanks to perf. •
Each program is executed 500 consecutive times.

B. Experimental results: CPU frequencies

Our first experimental results are presented in Fig. 1. We
have plotted the ratio of the average execution time for each
TACLeBench program, between the min. and max. speed
of the processor. This can be seen as the speedup achieved
by the program when the processor switches its speed from
600 MHz to 1400 MHz. The red vertical line represents the
theoretical speedup that should be achieved if tasks are fully
scalable w.r.t. processor speed. As it is shown in the figure,
few applications are close the theoretical speedup achieved by
increasing the frequency of the processor (e.g. ammunition,
mpeg2). Like it was expected, this is due to the fact that
programs request other resources than just the CPU and
hardware optimization like caches and branch predictors are



1 1.05 1.1 1.15 1.2

mpeg2
ammunition

dijkstra
susan

gsm enc
cjpeg transupp

rijndael enc
rijndael dec

epic
gsm dec
huff enc

fmref
adpcm enc

h264 dec
cjpeg wrbmp

adpcm dec
statemate

petrinet
ndes

250 MHz 375 MHz

Fig. 2: Performance degradation when memory speed is set at
different frequencies

not able to fully limit the impact of memory accesses. For
instance, programs like adpcm_dec, ndes and statemate
are performing more memory requests which provokes some
delays when the processor actually goes faster. The maximal
slowdown that was observed was close to 7%, nevertheless it
is important to notice that in our experiments, programs are
executed in isolation and the system has very minimal services
running in parallel. This gap should be more noticeable when
other programs interfere or pollute shared caches for example.

C. Experimental results: Memory frequencies

To further reduce energy consumption on modern embedded
architectures, DVFS capabilities have been included in other
components like memory and buses. As a matter of fact,
energy consumed by the memory also represents a large
portion of the total energy utilized by the system [3]. Previous
works [4] have demonstrated that similarly to scaling down the
processor, the memory can be slowed down to save in energy
and still meet real-time constraints.

We have performed some experiments thanks to the
TACLeBench suite in order to observe the impact of memory
frequency on this benchmark. The Raspberry Pi firmware
allows us to set a given frequency for the SDRAM included
on the board. Our goal is to demonstrate that for CPU
intensive programs, memory can be slowed without having an
important impact on the program’s performance. By doing so,
further energy savings can be achieved. Fig. 2 illustrates our
experimental results. We present the performance degradation
in terms of execution time, when the system’s memory is
slowed down to 250 MHz and 375 MHz respectively (default
memory speed is 500 MHz). The processor speed is fixed at its
maximum: 1400MHz. Having a ratio close to 1 means that the
memory speed had almost no effect on the program execution
time time. As we can see, programs like dijkstra and
mpeg2 perform almost identically even when memory speed
is brought down. On the contrary, programs like ndes and

petrinet should be executed without changing the memory
speed, otherwise their WCET would change significantly.

Our experimental results confirm the following: (i) WCET
cannot be considered as fully scalable w.r.t. CPU speed; and
(ii) memory plays a major role on tasks’ WCET. A system-
wide DVFS algorithm with a task model having various
terms that vary in function of hardware speeds (Section II-C)
would be ideal. Nevertheless, existing approaches [4], [9]
have decomposed tasks on number of cycles required for
each hardware component, which in practice cannot always
be performed on an embedded real-time system.

IV. PROPOSED TASK MODEL AND DVFS ALGORITHM

A. Task model with probabilistic parameters

Since the decomposition of tasks into cycles is not always
practical, we are interested in proposing a task model based
on probabilistic real-time systems, where the WCET of a
task is defined thanks to a probability function, also called
probabilistic WCET (pWCET). At the same time, since a
probabilistic real-time systems can guarantee a minimum
degree of schedulability, we can increase functionalities and
services on modern embedded systems.

The pWCET, as defined in [6], is the least upper bound,
on the execution time distribution of the program. This upper
bound can be defined as follows:

Ci =
(

Cmin C1 . . . Cmax

fCi(C
min) fCi(C

1) . . . fCi(C
max)

)
where fCi

(c) = P (Ci = c) is the probability that task
τi execution time will be bounded by c time units and∑

j=0 fCi
(cj) = 1.

B. Frequency-aware task model

When defining a frequency-aware probabilistic task model,
we need to know how the pWCET changes under different
frequencies. For instance, the probability functions can change
significantly and more values would be necessary to describe
the behavior of the task. Fig. 3 shows this behavior thanks to
traces of execution times for the cpjeg_wrbmp program of
the TACLeBench suite under two different CPU frequencies
(1400 and 600MHz).

Therefore, our proposed task model defines different
pWCET for each task in function of frequencies considered
at a hardware level. In our case, the pWCET is defined in
function of the CPU and memory frequency. It is important to
note that not all hardware combinations need to be considered
for all tasks. For example, for tasks where DVFS at a memory
level would not be beneficial, we would not require to store
the probability functions of the different memory frequencies.

C. DVFS probabilistic real-time scheduling

In general, DVFS techniques should have low overhead,
i.e. the complexity of deriving a frequency should not take
much time or space since these algorithms are executed at
runtime. A drawback from considering different pWCET for
each combination of hardware is the space it would take to



(a) 1400MHz (b) 600MHz

Fig. 3: Execution time traces and density functions for the cpjeg_wrbmp benchmark

store all the information. However, we describe the principle
of how probabilistic DVFS could work.

Let us consider the following task set being scheduled in a
single-core processor:

τ1 :

((
3 4 5
0.2 0.75 0.05

)min

,

(
2 4

0.95 0.05

)max

, 5, 5

)

τ2 :

((
2 4
0.7 0.3

)min

,

(
1 3

0.99 0.01

)max

, 10, 10

)

For space limitation reason we will consider that DVFS is only
applied to the processor and only two speeds are available.
However, we could consider frequency scaling at the memory
level as well and change frequencies during the context switch.

In this example, even if the system is running at its
max. speed, it would be deemed as non-schedulable for
any deterministic scheduling policy. Nevertheless, probabilistic
response time analysis [5] can be used to derive a degree of
schedulability which in this case is 99.9975%. Considering this
schedulability rate is acceptable, the problem relies on the fact
that at a min. frequency, the schedulability degree becomes
52.65%, significantly lower than the tolerable threshold.

The probabilistic DVFS schedulability analysis can be de-
composed into two phases: (i) derive suitable speeds guaran-
teeing a schedulability degree offline and; (ii) an online phase
that further reduces speed whenever it is possible. For instance,
in the example, a suitable scheme would be beginning at min.
speed, then switch to the max. speed for the last execution
of τ1 during the hyperperiod, giving a schedulability rate
of 96.9%. However, if the first job of τ1 finishes at 3 time
units and τ2 finishes within 2 time units, then the second job
of τ2 can complete its execution even when the processor
is at its min. speed, allowing the system to complete its
execution with its minimal energy consumption. As opposed
to deterministic scheduling algorithms, DVFS on probabilistic
systems can accept different speed configurations to guarantee
the required schedulability degree, which could lead to less
energy consumption.

V. CONCLUSION AND FUTURE WORKS

This paper introduces a probabilistic task model for real-
time systems capable of using DVFS techniques. The proposed
model has been based on experiments and differs from most
existing works that consider fully scalable WCET. We have
also demonstrated how DVFS techniques can be applied to
probabilistic real-time systems without compromising timing
guarantees for these systems. For future works we plan to
fully evaluate the extension of probabilistic DVFS scheduling
algorithms in terms of energy reduction and complexity. We
also want to propose a method to derive pWCET distributions
for tasks with and without frequency scaling hardware.

REFERENCES

[1] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo, “Energy-
aware scheduling for real-time systems: A survey,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 15, no. 1, p. 7, 2016.

[2] C. Scordino, L. Abeni, and J. Lelli, “Real-time and energy efficiency in
linux: theory and practice,” ACM SIGAPP Applied Computing Review,
pp. 18–30, 2019.

[3] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu,
“Memory power management via dynamic voltage/frequency scaling,”
in Proceedings of the 8th ACM international conference on Autonomic
computing, 2011, pp. 31–40.

[4] H. Yun, P.-L. Wu, A. Arya, C. Kim, T. Abdelzaher, and L. Sha, “System-
wide energy optimization for multiple dvs components and real-time
tasks,” Real-Time Systems, vol. 47, no. 5, p. 489, 2011.

[5] D. Maxim and L. Cucu-Grosjean, “Response time analysis for fixed-
priority tasks with multiple probabilistic parameters,” in 2013 IEEE 34th
Real-Time Systems Symposium, 2013, pp. 224–235.

[6] R. I. Davis and L. Cucu-Grosjean, “A survey of probabilistic timing
analysis techniques for real-time systems,” Leibniz Transactions on
Embedded Systems, vol. 6, no. 1, pp. 03–1, 2019.

[7] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez, “Power-
aware scheduling for periodic real-time tasks,” IEEE Transactions on
Computers, vol. 53, no. 5, pp. 584–600, 2004.

[8] C. Scordino and G. Lipari, “A resource reservation algorithm for power-
aware scheduling of periodic and aperiodic real-time tasks,” IEEE
Transactions on Computers, vol. 55, no. 12, pp. 1509–1522, 2006.

[9] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg, “Fast:
Frequency-aware static timing analysis,” ACM Transactions on Embed-
ded Computing Systems (TECS), pp. 200–224, 2006.

[10] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Wägemann, and S. Wegener,
“TACLeBench: A benchmark collection to support worst-case execution
time research,” in 16th International Workshop on Worst-Case Execution
Time Analysis (WCET 2016), 2016, pp. 2:1–2:10.


