
1/28

Scheduling Multi-Periodic Mixed-Criticality DAGs
on Multi-Core Architectures

Roberto MEDINA
Etienne BORDE

Laurent PAUTET

December 13, 2018

2/28

Outline

Research Context

Problem Statement

Scheduling MC-DAGs on multi-cores

Case Study

Performance tests

Conclusion and perspectives

3/28

Outline

Research Context
WCET estimation
Mixed-criticality execution
Data-flow model of computation

Problem Statement

Scheduling MC-DAGs on multi-cores

Case Study

Performance tests

Conclusion and perspectives

4/28

Research context

I Safety-critical systems: stringent time requirements +
software components with different criticalities.
I Outputs on time.
I Life-critical, mission-critical and non-critical.
I Often isolated: architecture or software level.

Current industrial trends
I Reduce size, weight, power consumption, heat.
I Integrate and deliver more services.
I Multi-core architectures: great processing capabilities

I Large overestimation of execution time → waste of CPU.

5/28

Timeliness: WCET estimation

I Real-time systems dimensioned with
Worst Case Execution Time (WCET).

I Estimating the WCET: a difficult problem1.
I Various methods to obtain an estimate.
I Multi-core architectures hardly predictable.
I Task rarely executes until its WCET.

1R. Wilhelm et al. “The worst-case execution-time problem - overview of methods and survey of tools”. In:
ACM Transactions on Embedded Computing Systems (2008).

6/28

Mixed-Criticality (MC) model
MC model to overcome poor resource usage2.

1. Different timing budgets.
I Ci (LO): Max. observed execution time (system designers).
I Ci (HI): Upper-bounded execution time (static analysis).

2. Incorporate tasks with different criticality levels: HI and LO.
3. Execution modes:

I LO-criticality mode: HI tasks + LO tasks.
I HI-criticality mode: only HI tasks → LO tasks discarded.

2Steve Vestal. “Preemptive scheduling of multi-criticality systems with varying degrees of execution time
assurance”. In: Real-Time Systems Symposium. IEEE. 2007.

7/28

Schedulability with mode transitions

I Example: schedule the task set {τ1, . . . , τ4}.
I HI-criticality tasks: τ1, τ3. LO-criticality tasks: τ2, τ4.

7/28

Schedulability with mode transitions
I Example: schedule the task set {τ1, . . . , τ4}.
I HI-criticality tasks: τ1, τ3. LO-criticality tasks: τ2, τ4.

I Mode transitions: potential deadline misses.
I Time drifts when tasks are data-dependent...

8/28

Designing safety-critical applications thanks to data-flows

I Models of Computation: data-flow &
Directed Acyclic Graphs (DAGs).
I Deterministic communication patterns.
I Boundedness in memory, deadlock/starvation freedom...

I Industrial tools based on these model
(e.g. Simulink, SCADE).
I Code generation, automatic deployment into architecture.

9/28

Outline

Research Context

Problem Statement

Scheduling MC-DAGs on multi-cores

Case Study

Performance tests

Conclusion and perspectives

10/28

Problem statement: scheduling data-dependent MC tasks

I MC scheduling is intractable: NP-hard problem3.
I Multiple DAG scheduling in multi-core architectures:

NP-complete problem4.

Industrial systems with both: MC task + DAGs

Existing works and current limitations
I For DAGs: List Scheduling efficient heuristic.

I No variations in execution time in the literature.
I No mode transitions for the system.

I For MC task sets: many different scheduling policies.
I Rarely take into account data-dependencies (DAG).
I When they do, systems are overdimensioned... again!

3Sanjoy Baruah. “Mixed criticality schedulability analysis is highly intractable”. In: 2009. url:
http://www.cs.unc.edu/˜baruah/Submitted/02cxty.pdf.

4Yu-Kwong Kwok and Ishfaq Ahmad. “Static scheduling algorithms for allocating directed task graphs to
multiprocessors”. In: ACM Computing Surveys 31.4 (1999).

http://www.cs.unc.edu/~baruah/Submitted/02cxty.pdf

10/28

Problem statement: scheduling data-dependent MC tasks

I MC scheduling is intractable: NP-hard problem3.
I Multiple DAG scheduling in multi-core architectures:

NP-complete problem4.

Industrial systems with both: MC task + DAGs

Existing works and current limitations
I For DAGs: List Scheduling efficient heuristic.

I No variations in execution time in the literature.
I No mode transitions for the system.

I For MC task sets: many different scheduling policies.
I Rarely take into account data-dependencies (DAG).
I When they do, systems are overdimensioned... again!

3Baruah, “Mixed criticality schedulability analysis is highly intractable”.
4Kwok and Ahmad, “Static scheduling algorithms for allocating directed task graphs to multiprocessors”.

11/28

Outline

Research Context

Problem Statement

Scheduling MC-DAGs on multi-cores
MC-correct schedules for MC-DAGs
Safe mode transition property
Meta-heuristic for MC-DAGs

Case Study

Performance tests

Conclusion and perspectives

12/28

MC-correct schedules for MC-DAGs on multi-cores

Definition
A MC-correct5 schedule is one which guarantees:

1. Condition LO-mode: If no vertex of any MC-DAG executes
beyond its Ci (LO) then all the vertices complete execution by
their deadlines.

2. Condition HI-mode: If no vertex of any MC-DAG executes
beyond its Ci (HI) then all the vertices designated as being of
HI-criticality complete execution by their deadlines.

5Sanjoy Baruah. “The federated scheduling of systems of mixed-criticality sporadic DAG tasks”. In: Real-Time
Systems Symposium. IEEE. 2016.

13/28

Safe mode transitions general property
I Intuition: At any instant t, HI task execution time given in LO

mode at least equal to the execution time given in HI mode.
I ψχi (t1, t2): cumulative execution time given to task τi in mode
χ from t1 to t2.

Safe Transition Property

ψLO
i (ri ,k , t) < Ci (LO) =⇒ ψLO

i (ri ,k , t) ≥ ψHI
i (ri ,k , t). (1)

14/28

Meta-heuristic for MC-DAGs Scheduling

I Solve the complex scheduling problem off-line:
computing static scheduling tables.
I Easier to verify and have certified.
I Easier to calculate ψχ

i , enforce Safe Transition Property.

MH-McDag

1. Compute static scheduling in HI-criticality mode.
2. Compute static scheduling in LO-criticality mode,

enforcing Safe Transition Property.

Produces MC-correct schedulers for MC-DAGs.

I Existing multi-core schedulers can be adapted to produce
MC-DAG schedulers.
I Global-Least Laxity First and Global-Earliest Deadline First.

15/28

Outline

Research Context

Problem Statement

Scheduling MC-DAGs on multi-cores

Case Study
Unmanned Air Vehicle for field exploration
Efficient implementations of MH-McDag

Performance tests

Conclusion and perspectives

16/28

Case Study: unmanned air vehicle (UAV)

remote

control

satellite

PFCS = 10

32=3

2=3
motor

ground

camera1

camera2

disk

ground

PMontage = 20

4=4

4=4

2=3

2=3

2=4

2

2

2 1

GPS

Receiver

F light
Ctrl

Altitude Ctrl

Guidance F ilter

Trans Grd

Cap1

Cap2

Diff1

Diff2

Concat

Back1

Back2

Encode Trans

2=3

2=3

3=4

2 2

Data Acq

Trans F leet
fleet

Figure 1: UAV with a Flight Control System and image processings

I Umax = UFCS + UMontage = 1.8 + 1.05 = 2.85.

17/28

Application of the federated approach

Figure 2: Five cores required for the federated scheduling approach5

Limitations

1. Single DAG has exclusive access to a cluster of cores.
2. HI tasks scheduled ASAP in the LO-criticality mode.

I Respects Safe Trans. Prop. but...
I LO-criticality task scheduling too constrained.
I No longer necessary with Safe Trans. Prop.

18/28

How to improve resource usage with MC-DAGs?

Two main strategies
I Adopt a global multi-core scheduling
→ MC-DAGs share cores (better resource usage)

I As late as possible (ALAP) policy in the HI mode
→ Relax HI-criticality tasks execution in the LO mode.

Genericity of our implementation (G-ALAP)

I Deadlines (based on Global-Earliest Deadline First).
I Laxities (based on Global-Least Laxity First).

19/28

Earliest deadline priority ordering

I Ready task jobs sorted by a “virtual deadline”.
I Virtual deadline for a job k of task τi in mode χ:

Dχ
i ,k = di ,k − CPχ

i . (2)

I di ,k deadline of the k-th activation of the MC-DAG.
I CPχ

i critical path to the vertex.

20/28

Computed scheduling tables w/ G-alap-edf

(a) HI-criticality scheduling w/ ALAP behavior

(b) LO-criticality scheduling

From five cores to three cores

21/28

Laxity-based priority ordering

I Ready tasks sorted by their laxities.
I Laxity for a job k of task τi :

Lχi ,k(t) = di ,k − t − (CPχ
i + Rχ

i ,k). (3)

I di ,k deadline of the k-th activation of the MC-DAG.
I t current time slot.
I CPχ

i critical path to the vertex.
I Rχ

i ,k remaining execution time.
I Initialized with Ci (LO) or Ci (HI).

22/28

Outline

Research Context

Problem Statement

Scheduling MC-DAGs on multi-cores

Case Study

Performance tests
MC-DAG generation
Acceptance rate results

Conclusion and perspectives

23/28

MC-DAG generation

I Unbiased random generation of MC-DAGs.
I Avoid particular DAG shapes6.
I System’s utilization is uniformly distributed among vertices7.

I Configurable parameters:
I Edge probability.
I Number of vertices.
I Number of MC-DAGs.
I Utilization of the system.
I Ratio HI/LO-criticality tasks.

I Open source framework8.

6Takao Tobita and Hironori Kasahara. “A standard task graph set for fair evaluation of multiprocessor
scheduling algorithms”. In: Journal of Scheduling 5.5 (2002), pp. 379–394.

7Enrico Bini and Giorgio C Buttazzo. “Measuring the performance of schedulability tests”. In: Real-Time
Systems Symposium 30.1 (2005).

8MC-DAG framework - https://github.com/robertoxmed/MC-DAG

https://github.com/robertoxmed/MC-DAG

24/28

Experimentation setup

I Generated large number of MC systems
(1000 systems/configuration).

I Fixed the number of cores and vertices.
I Vary the utilization of the sysetem.
I Vary the number of MC-DAGs.
I Vary the density of the graph (probability to have an edge).
I Measured the acceptance rate in function of the normalized

utilization.

25/28

Significant performance increase
I Comparison between our G-alap implementations and

FedMcDag5.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

G-alap-llf
G-alap-edf
FedMcDag

(a) e = 20%, |G| = 2 and m = 4.
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(b) e = 20%, |G| = 4 and m = 4.

I Better schedulability when the number of MC-DAGs increases.

26/28

Significant performance increase

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

G-alap-llf
G-alap-edf
FedMcDag

(c) e = 20%, |G| = 2 and m = 4.
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(d) e = 40%, |G| = 2 and m = 4.

When MC-DAGs are denser (parameter e):
I More difficult to schedule a MC system.
I Still better schedulability than existing approaches.

27/28

Outline

Research Context

Problem Statement

Scheduling MC-DAGs on multi-cores

Case Study

Performance tests

Conclusion and perspectives

28/28

Conclusion on MC-DAG scheduling

I Designed a meta-heuristic to obtain various schedulers for
DAGs on Mixed-Criticality systems.

I Meta-heuristic proven to be correct:
I Schedulability on both modes (HI & LO).
I Safe mode transitions to higher criticality mode.

I Our implementations outperform the state of the art.
I More systems are schedulable considering a given architecture.
I Good acceptance rate even when the utilization is high.

Perspectives
I Support an arbitrary number of criticality levels.
I Perform benchmarks on number of preemptions.

28/28

Entailed number of preemptions

0.2 0.4 0.6 0.8

0.1

1

(a) e = 20%, |G | = 2, m = 4.
0.2 0.4 0.6 0.8

0.1

1

G-alap-llf
G-alap-edf
FedMcDag

(b) e = 40%, |G | = 2, m = 4.

Figure 3: Average number of preemptions per job (log scale)

I Number of preemptions for systems schedulable with all
methods.

	Research Context
	WCET estimation
	Mixed-criticality execution
	Data-flow model of computation

	Problem Statement
	Scheduling MC-DAGs on multi-cores
	MC-correct schedules for MC-DAGs
	Safe mode transition property
	Meta-heuristic for MC-DAGs

	Case Study
	Unmanned Air Vehicle for field exploration
	Efficient implementations of MH-McDag

	Performance tests
	MC-DAG generation
	Acceptance rate results

	Conclusion and perspectives

